Skip to main content

Knowledge Is at the Edge! How to Search in Distributed Machine Learning Models

  • Conference paper
  • First Online:
On the Move to Meaningful Internet Systems. OTM 2017 Conferences (OTM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10573))

Abstract

With the advent of the internet of things and industry 4.0 an enormous amount of data is produced at the edge of the network. Due to a lack of computing power, this data is currently send to the cloud where centralized machine learning models are trained to derive higher level knowledge. With the recent development of specialized machine learning hardware for mobile devices, a new era of distributed learning is about to begin that raises a new research question: How can we search in distributed machine learning models? Machine learning at the edge of the network has many benefits, such as low-latency inference and increased privacy. Such distributed machine learning models can also learn personalized for a human user, a specific context, or application scenario. As training data stays on the devices, control over possibly sensitive data is preserved as it is not shared with a third party. This new form of distributed learning leads to the partitioning of knowledge between many devices which makes access difficult. In this paper we tackle the problem of finding specific knowledge by forwarding a search request (query) to a device that can answer it best. To that end, we use a entropy based quality metric that takes the context of a query and the learning quality of a device into account. We show that our forwarding strategy can achieve over 95% accuracy in a urban mobility scenario where we use data from 30 000 people commuting in the city of Trento, Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mark Gurman; BloombergTechnology, Apple Is Working on a Dedicated Chip to Power AI on Devices: https://www.bloomberg.com/news/articles/2017-05-26/apple-said-to-plan-dedicated-chip-to-power-ai-on-devices.

  2. 2.

    For better readability we do not state all fields of the query here (i.e. \(H\), \(R\), \(Q\), \(\overrightarrow{N}\)).

References

  1. Cisco global cloud index : Forecast and methodology, 2013–2018. Online (2014)

    Google Scholar 

  2. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amaral, L.A.N., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. 97, 11149–11152 (2000)

    Article  Google Scholar 

  4. Ashbrook, D., Starner, T.: Using GPS to learn significant locations and predict movement across multiple users. Pers. Ubiquit. Comput. 7(5), 275–286 (2003)

    Article  Google Scholar 

  5. Bach, T., Tariq, M.A., Mayer, C., Rothermel, K.: Utilizing the hive mind – how to manage knowledge in fully distributed environments. In: Debruyne, C., Panetto, H., Meersman, R., Dillon, T., Weichhart, G., An, Y., Ardagna, C.A. (eds.) OTM 2015 Conferences. LNCS, vol. 9415, pp. 219–236. Springer, Cham (2015). Christophe Debruyne

    Chapter  Google Scholar 

  6. Batko, M., Gennaro, C., Zezula, P.: A scalable nearest neighbor search in P2P systems. In: Ng, W.S., Ooi, B.-C., Ouksel, A.M., Sartori, C. (eds.) DBISP2P 2004. LNCS, vol. 3367, pp. 79–92. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31838-5_6

    Chapter  Google Scholar 

  7. Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting scalable multi-attribute range queries. ACM SIGCOMM Comput. Comm. Rev. (2004)

    Google Scholar 

  8. Chen, D., Zhou, J., Le, J.: Reverse nearest neighbor search in peer-to-peer systems. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Christiansen, H. (eds.) FQAS 2006. LNCS, vol. 4027, pp. 87–96. Springer, Heidelberg (2006). doi:10.1007/11766254_8

    Chapter  Google Scholar 

  9. Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012)

    Article  Google Scholar 

  10. Ganesan, P., Yang, B., Garcia-Molina, H.: One torus to rule them all: multi-dimensional queries in P2P systems. In: Proceedings of the 7th International Workshop on the Web and Databases: Colocated with ACM SIGMOD/PODS 2004. ACM (2004)

    Google Scholar 

  11. Garcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T., Iamnitchi, A., Barcellos, M., Felber, P., Riviere, E.: Edge-centric computing: vision and challenges. ACM SIGCOMM Comput. Commun. Rev. 45(5), 37–42 (2015)

    Article  Google Scholar 

  12. Heigold, G., Vanhoucke, V., Senior, A., Nguyen, P., Ranzato, M., Devin, M., Dean, J.: Multilingual acoustic models using distributed deep neural networks. In: IEEE ICASSP (2013)

    Google Scholar 

  13. Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B., Koldehofe, B.: Mobile fog: a programming model for large-scale applications on the internet of things. In: Proceedings of the Second ACM SIGCOMM Workshop on Mobile Cloud Computing, pp. 15–20. ACM (2013)

    Google Scholar 

  14. World’s biggest data breaches (2015). informationisbeautiful.net

  15. Khan, R., Khan, S.U., Zaheer, R., Khan, S.: Future internet: the internet of things architecture, possible applications and key challenges. In: Proceedings of the FIT (2012)

    Google Scholar 

  16. Kienzle, M.G.: Cognitive technologies for smarter cities. In: Proceedings of the ICDCS (2016)

    Google Scholar 

  17. Li, M., Lee, W.-C., Sivasubramaniam, A.: Semantic small world: an overlay network for peer-to-peer search. In: Proceedings of the ICNP (2004)

    Google Scholar 

  18. Li, M., Lee, W.-C., Sivasubramaniam, A., Zhao, J.: Supporting k nearest neighbors query on high-dimensional data in P2P systems. FCS 2(3), 234–247 (2008)

    Google Scholar 

  19. Malkov, Y., Ponomarenko, A., Logvinov, A., Krylov, V.: Approximate nearest neighbor algorithm based on navigable small world graphs. Inf. Syst. 45, 61–68 (2014)

    Article  Google Scholar 

  20. Manning, C.D., Schütze, H., et al.: Foundations of Statistical Natural Language Processing, vol. 999. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  21. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big data: the next frontier for innovation, competition, and productivity (2011)

    Google Scholar 

  22. Mayer, C., Tariq, M.A., Li, C., Rothermel, K.: GrapH: heterogeneity-aware graph computation with adaptive partitioning. In: Proceedings of the ICDCS (2016)

    Google Scholar 

  23. Mayer, R., Gupta, H., Saurez, E., Ramachandran, U.: The fog makes sense: enabling social sensing services with limited internet connectivity. In: Proceedings of the 2nd International Workshop on Social Sensing. ACM (2017)

    Google Scholar 

  24. Mayer, R., Koldehofe, B., Rothermel, K.: Predictable low-latency event detection with parallel complex event processing. IEEE Internet of Things Journal 2(4), 274–286 (2015)

    Article  Google Scholar 

  25. McMahan, B., Ramage, D.: Federated learning: Collaborative machine learning without centralized training data. Technical report, Google (2017)

    Google Scholar 

  26. Montresor, A.: Reflecting on the past, preparing for the future: from peer-to-peer to edge-centric computing. In: Proceedings of the ICDCS (2016)

    Google Scholar 

  27. Montresor, A., Jelasity, M.: Peersim: a scalable P2P simulator. In: IEEE Ninth International Conference on Peer-to-Peer Computing, P2P 2009, pp. 99–100. IEEE (2009)

    Google Scholar 

  28. Müller, W., Henrich, A.: Fast retrieval of high-dimensional feature vectors in P2P networks using compact peer data summaries. In: Proceedings of the ACM SIGMM International Workshop on Multimedia Information Retrieval, pp. 79–86. ACM (2003)

    Google Scholar 

  29. Poxrucker, A., Bahle, G., Lukowicz, P.: Towards a real-world simulator for collaborative distributed learning in the scenario of urban mobility. In: Proceedings of the SASOW 2014 (2014)

    Google Scholar 

  30. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable network. ACM SIGCOMM Comput. Commun. Rev. 31(4), 161–172 (2001)

    Article  MATH  Google Scholar 

  31. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001). doi:10.1007/3-540-45518-3_18

    Chapter  Google Scholar 

  32. Schalkwyk, J., Beeferman, D., Beaufays, F., Byrne, B., Chelba, C., Cohen, M., Kamvar, M., Strope, B.: Your word is my command: Google search by voice: a case study. In: Neustein, A. (ed.) Advances in Speech Recognition, pp. 61–90. Springer, Boston (2010). doi:10.1007/978-1-4419-5951-5_4

    Chapter  Google Scholar 

  33. Schmidt, C., Parashar, M.: Squid: enabling search in DHT-based systems. J. Parallel Distrib. Comput. 68(7), 962–975 (2008)

    Article  MATH  Google Scholar 

  34. Shu, Y., Ooi, B.C., Tan, K.-L., Zhou, A.: Supporting multi-dimensional range queries in peer-to-peer systems. In: Proceedings of the P2P. IEEE (2005)

    Google Scholar 

  35. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM Comput. Commun. Rev. 31(4), 149–160 (2001)

    Article  Google Scholar 

  36. Sutton, C., McCallum, A.: An Introduction to Conditional Random Fields for Relational Learning. Introduction to Statistical Relational Learning, vol. 2. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  37. Tang, C., Xu, Z., Mahalingam, M.: pSearch: information retrieval in structured overlays. ACM SIGCOMM Comput. Commun. Rev. 33(1), 89–94 (2003)

    Article  Google Scholar 

  38. Witschel, H.F.: Content-oriented topology restructuring for search in P2P networks. Technical report, University of Leipzig, Germany (2005)

    Google Scholar 

  39. Ziegeldorf, J.H., Morchon, O.G., Wehrle, K.: Privacy in the internet of things: threats and challenges. Secur. Commun. Netw. 7(12), 2728–2742 (2014)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the European Union’s Seventh Framework Programme for partially funding this research through the ALLOW Ensembles project (project 600792).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bach, T., Tariq, M.A., Mayer, R., Rothermel, K. (2017). Knowledge Is at the Edge! How to Search in Distributed Machine Learning Models. In: Panetto, H., et al. On the Move to Meaningful Internet Systems. OTM 2017 Conferences. OTM 2017. Lecture Notes in Computer Science(), vol 10573. Springer, Cham. https://doi.org/10.1007/978-3-319-69462-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69462-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69461-0

  • Online ISBN: 978-3-319-69462-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics