Contingency Management for Event-Driven Business Processes

  • John WondohEmail author
  • Georg Grossmann
  • Markus Stumptner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10573)


In the past two decades, business process research has focused on process flexibility to facilitate the operation of business processes in an open and dynamic environment. This is important to ensure that processes accurately reflect and handle changes occurring in the real-world. While substantial existing work has investigated changes in business processes, the contingency management of running processes did not receive sufficient attention, mainly because events are considered to be immutable. Yet high-level business events have been shown to be subject to changes. To be able to capture such changes, business events have to be considered as bitemporal, where the occurrence (scheduled) time and detection time of events are differentiated. Modifying an event’s content may result in a contingency that has to be handled appropriately. For instance, the scheduled time of a planned event in a process may change, which has an impact on subsequent events. In this work, we present an approach to capture bitemporal mutable events in business processes, assess the scope of changes and provide an approach for specifying contingency plans.


Contingency plans Bitemporal mutable events Business processes 



This research was partially funded by the Data to Decisions Cooperative Research Centre (D2D CRC).


  1. 1.
    Ayora, C., Torres, V., Reichert, M., Weber, B., Pelechano, V.: Towards run-time flexibility for process families: open issues and research challenges. In: Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 477–488. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36285-9_49 CrossRefGoogle Scholar
  2. 2.
    Bucchiarone, A., Marconi, A., Pistore, M., Raik, H.: Dynamic adaptation of fragment-based and context-aware business processes. In: Proceedings of ICWS, pp. 33–41, June 2012Google Scholar
  3. 3.
    Buchmann, A., Appel, S., Freudenreich, T., Frischbier, S., Guerrero, P.E.: From calls to events: architecting future BPM systems. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 17–32. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32885-5_2 CrossRefGoogle Scholar
  4. 4.
    da Costa, L.A.G., Pires, P.F., Mattoso, M.: Automatic composition of web services with contingency plans. In: Proceedings of ICWS, pp. 454–461, July 2004Google Scholar
  5. 5.
    Damaggio, E., Hull, R., Vaculín, R.: On the equivalence of incremental and fixpoint semantics for business artifacts with guard-stage-milestone lifecycles. Inf. Syst. 38(4), 561–584 (2013)CrossRefGoogle Scholar
  6. 6.
    Donaldson, L.: The Contingency Theory of Organizations. Sage, Thousand Oaks (2001)CrossRefGoogle Scholar
  7. 7.
    Furche, T., Grasso, G., Huemer, M., Schallhart, C., Schrefl, M.: PeaCE-Ful web event extraction and processing as bitemporal mutable events. ACM Trans. Web 10(3), 16:1–416:7 (2016)CrossRefGoogle Scholar
  8. 8.
    Gou, Y., Ghose, A., Chang, C.-F., Dam, H.K., Miller, A.: Semantic monitoring and compensation in socio-technical processes. In: Indulska, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8823, pp. 117–126. Springer, Cham (2014). doi: 10.1007/978-3-319-12256-4_12 Google Scholar
  9. 9.
    Guide, V.R., Jayaraman, V., Linton, J.D.: Building contingency planning for closed-loop supply chains with product recovery. J. Oper. Manag. 21(3), 259–279 (2003)CrossRefGoogle Scholar
  10. 10.
    Kim, S.-K., Chakravarthy, S.: Temporal databases with two-dimensional time: modeling and implementation of multihistory. Inf. Sci. 80(1), 43–89 (1994)CrossRefGoogle Scholar
  11. 11.
    Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Monitoring business constraints with the event calculus. ACM TIST 10, 17:1–17:30 (2013)Google Scholar
  12. 12.
    Niehaves, B., Poeppelbuss, J., Plattfaut, R., Becker, J.: BPM capability development - a matter of contingencies. Bus. Process Manag. J. 20(1), 90–106 (2014)CrossRefGoogle Scholar
  13. 13.
    Pichler, H., Wenger, M., Eder, J.: Composing time-aware web service orchestrations. In: Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 349–363. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02144-2_29 CrossRefGoogle Scholar
  14. 14.
    Ploesser, K., Peleg, M., Soffer, P., Rosemann, M., Recker, J.C.: Learning from context to improve business processes. BPTrends 6(1), 1–7 (2009)Google Scholar
  15. 15.
    Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information systems. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 115–135. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00899-3_7 CrossRefGoogle Scholar
  16. 16.
    Rosemann, M., Recker, J.: Context-aware process design: exploring the extrinsic drivers for process flexibility. In: Proceedings of BPMDS@CAISE (2006)Google Scholar
  17. 17.
    Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.: Process flexibility: a survey of contemporary approaches. In: Dietz, J.L.G., Albani, A., Barjis, J. (eds.) CIAO!/EOMAS 2008. LNBIP, vol. 10, pp. 16–30. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-68644-6_2 CrossRefGoogle Scholar
  18. 18.
    Snodgrass, R.T.: Temporal databases. In: Frank, A.U., Campari, I., Formentini, U. (eds.) GIS 1992. LNCS, vol. 639, pp. 22–64. Springer, Heidelberg (1992). doi: 10.1007/3-540-55966-3_2 CrossRefGoogle Scholar
  19. 19.
    Sousa, R., Voss, C.A.: Contingency research in operations management practices. J. Oper. Manag. 26(6), 697–713 (2008)CrossRefGoogle Scholar
  20. 20.
    Sripada, S.M.: A logical framework for temporal deductive databases. In: Proceedings of VLDB, pp. 171–182 (1988)Google Scholar
  21. 21.
    Trkman, P.: The critical success factors of business process management. Int. J. Inf. Manag. 30(2), 125–134 (2010)CrossRefGoogle Scholar
  22. 22.
    van der Aalst, W.M.P., Rosemann, M., Dumas, M.: Deadline-based escalation in process-aware information systems. Decis. Support Syst. 43(2), 492–511 (2007)CrossRefGoogle Scholar
  23. 23.
    Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features - enhancing flexibility in process-aware information systems. Data Knowl. Eng. 66(3), 438–466 (2008)CrossRefGoogle Scholar
  24. 24.
    Wondoh, J., Grossmann, G., Gasevic, D., Reichert, M., Schrefl, M., Stumptner, M.: Bitemporal support for business process contingency management. In: Jeusfeld, M.A., Karlapalem, K. (eds.) ER 2015. LNCS, vol. 9382, pp. 109–118. Springer, Cham (2015). doi: 10.1007/978-3-319-25747-1_11 CrossRefGoogle Scholar
  25. 25.
    Wondoh, J., Grossmann, G., Stumptner, M.: Propagation of event content modification in business processes. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 70–84. Springer, Cham (2016). doi: 10.1007/978-3-319-46295-0_5 CrossRefGoogle Scholar
  26. 26.
    Wondoh, J., Grossmann, G., Stumptner, M.: Utilising bitemporal information for business process contingency management. In: Proceedings of APCCM, pp. 45:1–45:10. ACM (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • John Wondoh
    • 1
    Email author
  • Georg Grossmann
    • 1
  • Markus Stumptner
    • 1
  1. 1.University of South of AustraliaAdelaideAustralia

Personalised recommendations