APOPSIS: A Web-Based Platform for the Analysis of Structured Dialogues

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10574)


A vast amount of opinions are surfacing on the Web but the lack of mechanisms for managing them leads to confusing and often chaotic dialogues. This creates the need for further semantic infrastructure and analysis of the views expressed in large-volume discussions. In this paper, we describe a web platform for modeling and analyzing argumentative discussions by offering different means of opinion analysis, allowing the participants to obtain a complete picture of the validity, the justification strength and the acceptance of each individual opinion. The system applies a semantic representation for modeling the user-generated arguments and their relations, a formal framework for evaluating the strength value of each argument and a collection of Machine Learning algorithms for the clustering of features and the extraction of association rules.


Debating platforms Opinion analysis Association rules K-means algorithm Multi-aspect evaluation 


  1. 1.
    Kunz, W., Rittel, H.W.J.: Issues as Elements of Information Systems, vol. 131. Institute of Urban and Regional Development, University of California, Berkeley (1970)Google Scholar
  2. 2.
    Patkos, T., Flouris, G., Bikakis, A.: Symmetric multi-aspect evaluation of comments. In: ECAI 2016—22nd European Conference on Artificial Intelligence, The Netherlands, vol. 285. IOS Press (2016)Google Scholar
  3. 3.
    Machine Learning Group at the University of Waikato.
  4. 4.
    Schneider, J., Groza, T., Passant, A.: A review of argumentation for the social semantic web. Semant. Web 4(2), 159–218 (2013)Google Scholar
  5. 5.
    Baroni, P., Romano, M., Toni, F., Aurisicchio, M., Bertanza, G.: Automatic evaluation of design alternatives with quantitative argumentation. Argument Comput. 6(1), 24–49 (2015)CrossRefzbMATHGoogle Scholar
  6. 6.
    Leite, J., Martins, J.: Social abstract argumentation. In: Twenty-Second International Joint Conference on Artificial Intelligence (2011)Google Scholar
  7. 7.
    Evripidou, V., Toni, F.: a social intelligent debating platform. J. Decis. Syst 23(3), 333–349 (2014)CrossRefGoogle Scholar
  8. 8.
    Anadiotis, G., Alexopoulos, P., Mpaslis, K., Zosakis, A., Kafentzis, K., Kotis, K.: Facilitating dialogue - using semantic web technology for eParticipation. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 258–272. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13486-9_18 CrossRefGoogle Scholar
  9. 9.
    Passant, A., Bojārs, U., Breslin, J.G., Decker, S.: The SIOC project: semantically-interlinked online communities, from humans to machines. In: Padget, J., Artikis, A., Vasconcelos, W., Stathis, K., da Silva, V.T., Matson, E., Polleres, A. (eds.) COIN 2009. LNCS, vol. 6069, pp. 179–194. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14962-7_12 CrossRefGoogle Scholar
  10. 10.
    Softic, S., Hausenblas, M.: Towards opinion mining through tracing discussions on the web. In: The 7th International Semantic Web Conference, p. 79. Citeseer (2008)Google Scholar
  11. 11.
    Miles, A., Bechhofer, S.: SKOS simple knowledge organization system reference (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.FORTH-ICS, Institute of Computer ScienceHeraklionGreece

Personalised recommendations