Skip to main content

A Particle Swarm-Based Approach for Semantic Similarity Computation

  • Conference paper
  • First Online:
On the Move to Meaningful Internet Systems. OTM 2017 Conferences (OTM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10574))

  • 1007 Accesses

Abstract

Semantic similarity plays a vital role within a myriad of shared data applications, such as data and information integration. A first step towards building such applications is to determine concepts, which are semantically similar to each other. One way to compute this similarity of two concepts is to assess their word similarity by exploiting different knowledge sources, e.g., ontologies, thesauri, domain corpora, etc. Over the last few years, several approaches to similarity assessment based on quantifying information content of concepts have been proposed and have shown encouraging performance. For all these approaches, the Least Common Subsumer (LCS) of two concepts plays an important role in determining their similarity. In this paper, we investigate the influence the choice of this node (or a set of nodes) on the quality of the similarity assessment. In particular, we develop a particle swarm optimization approach that optimally discovers LCSs. An empirical evaluation, based on well-established biomedical benchmarks and ontologies, illustrates the accuracy of the proposed approach, and demonstrates that similarity estimations provided by our approach are significantly more correlated with human ratings of similarity than those obtained via related works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.semantic-measures-library.org/sml.

References

  1. Al-Mubaid, H., Nguyen, H.A.: Measuring semantic similarity between biomedical concepts within multiple ontologies. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 39(4), 389–398 (2009)

    Article  Google Scholar 

  2. Batet, M., Harispe, S., Ranwez, S., Sánchez, D., Ranwez, V.: An information theoretic approach to improve semantic similarity assessments across multiple ontologies. Info. Sci. 283, 197–210 (2014)

    Article  Google Scholar 

  3. Batet, M., Sánchez, D., Valls, A., Gibert, K.: Semantic similarity estimation from multiple ontologies. Appl. Intell. 38(1), 29–44 (2013)

    Article  Google Scholar 

  4. Bock, J., Hettenhausen, J.: Discrete particle swarm optimisation for ontology alignment. Inf. Sci. 192, 152–173 (2012)

    Article  Google Scholar 

  5. Correa, E.S., Freitas, A.A., Johnson, C.G.: A new discrete particle swarm algorithm applied to attribute selection in a bioinformatics data set. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 35–42. ACM (2006)

    Google Scholar 

  6. Correa, E.S., Freitas, A.A., Johnson, C.G.: Particle swarm and Bayesian networks applied to attribute selection for protein functional classification. In: Proceedings of the 9th Annual Conference on Companion on Genetic and Evolutionary Computation, pp. 2651–2658. ACM (2007)

    Google Scholar 

  7. Harispe, S., Ranwez, S., Janaqi, S., Montmain, J.: The semantic measures library and toolkit: fast computation of semantic similarity and relatedness using biomedical ontologies. Bioinformatics 30(5), 740–742 (2013)

    Article  Google Scholar 

  8. Hliaoutakis, A.: Semantic similarity measures in mesh ontology and their application to information retrieval on medline. Master’s thesis (2005)

    Google Scholar 

  9. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy. arXiv preprint cmp-lg/9709008 (1997)

  10. Leacock, C., Chodorow, M.: Combining local context and WordNet similarity for word sense identification. WordNet Electron. Lexical Database 49(2), 265–283 (1998)

    Google Scholar 

  11. Lin, D., et al.: An information-theoretic definition of similarity. In: ICML, vol. 98, pp. 296–304. Citeseer (1998)

    Google Scholar 

  12. Martı, S., Valls, A., SáNchez, D., et al.: Semantically-grounded construction of centroids for datasets with textual attributes. Knowl.-Based Syst. 35, 160–172 (2012)

    Article  Google Scholar 

  13. Nelson, S.J., Johnston, W.D., Humphreys, B.L.: Relationships in medical subject headings (MeSH). In: Bean, C.A., Green, R. (eds.) Relationships in the Organization of Knowledge. Information Science and Knowledge Management, vol. 2, pp. 171–184. Springer, Dordrecht (2001). doi:10.1007/978-94-015-9696-1_11

    Chapter  Google Scholar 

  14. Patwardhan, S., Banerjee, S., Pedersen, T.: Using measures of semantic relatedness for word sense disambiguation. In: Gelbukh, A. (ed.) CICLing 2003. LNCS, vol. 2588, pp. 241–257. Springer, Heidelberg (2003). doi:10.1007/3-540-36456-0_24

    Chapter  Google Scholar 

  15. Pedersen, T., Pakhomov, S.V., Patwardhan, S., Chute, C.G.: Measures of semantic similarity and relatedness in the biomedical domain. J. Biomed. Inform. 40(3), 288–299 (2007)

    Article  Google Scholar 

  16. Petrakis, E.G., Varelas, G., Hliaoutakis, A., Raftopoulou, P.: X-similarity: computing semantic similarity between concepts from different ontologies. JDIM 4(4), 233–237 (2006)

    Google Scholar 

  17. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Trans. Syst. Man Cybern. 19(1), 17–30 (1989)

    Article  Google Scholar 

  18. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. arXiv preprint cmp-lg/9511007 (1995)

  19. Rodríguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity classes from different ontologies. IEEE Trans. Knowl. Data Eng. 15(2), 442–456 (2003)

    Article  Google Scholar 

  20. Sánchez, D., Batet, M.: A new model to compute the information content of concepts from taxonomic knowledge. Int. J. Semant. Web Info. Syst. (IJSWIS) 8(2), 34–50 (2012)

    Article  Google Scholar 

  21. Sánchez, D., Batet, M.: A semantic similarity method based on information content exploiting multiple ontologies. Expert Syst. Appl. 40(4), 1393–1399 (2013)

    Article  Google Scholar 

  22. Sánchez, D., Batet, M., Isern, D., Valls, A.: Ontology-based semantic similarity: a new feature-based approach. Expert Syst. Appl. 39(9), 7718–7728 (2012)

    Article  Google Scholar 

  23. Sánchez, D., Solé-Ribalta, A., Batet, M., Serratosa, F.: Enabling semantic similarity estimation across multiple ontologies: an evaluation in the biomedical domain. J. Biomed. Inform. 45(1), 141–155 (2012)

    Article  Google Scholar 

  24. Saruladha, K., Aghila, G., Bhuvaneswary, A.: Information content based semantic similarity for cross ontological concepts. Int. J. Eng. Sci. Tech. 3(6), 327–336 (2011)

    Google Scholar 

  25. Seco, N., Veale, T., Hayes, J.: An intrinsic information content metric for semantic similarity in WordNet. In: Proceedings of the 16th European Conference on Artificial Intelligence, pp. 1089–1090. IOS Press (2004)

    Google Scholar 

  26. Spackman, K.: SNOMED CT milestones: endorsements are added to already-impressive standards credentials. Healthc. Inf. Bus. Mag. info. Commun. Syst. 21(9), 54–56 (2004)

    Google Scholar 

  27. Sy, M.-F., Ranwez, S., Montmain, J., Regnault, A., Crampes, M., Ranwez, V.: User centered and ontology based information retrieval system for life sciences. BMC Bioinform. 13, S4 (2012)

    Article  Google Scholar 

  28. Vicient, C., Sánchez, D., Moreno, A.: An automatic approach for ontology-based feature extraction from heterogeneous textualresources. Eng. Appl. Artif. Intell. 26(3), 1092–1106 (2013)

    Article  Google Scholar 

  29. Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics, pp. 133–138 (1994)

    Google Scholar 

Download references

Acknowledgments

The work has been (partly) funded by the Deutsche Forschungsgemeinschaft (DFG) as part of CRC 1076 AquaDiva. S. Babalou is also supported by a scholarship from German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Babalou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Babalou, S., Algergawy, A., König-Ries, B. (2017). A Particle Swarm-Based Approach for Semantic Similarity Computation. In: Panetto, H., et al. On the Move to Meaningful Internet Systems. OTM 2017 Conferences. OTM 2017. Lecture Notes in Computer Science(), vol 10574. Springer, Cham. https://doi.org/10.1007/978-3-319-69459-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69459-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69458-0

  • Online ISBN: 978-3-319-69459-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics