Skip to main content

Design of a Cloud Brokerage Architecture Using Fuzzy Rough Set Technique

  • Conference paper
  • First Online:
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10607))

Abstract

Cloud computing offers numerous services to the cloud consumers such as infrastructure, platform, software, etc. Due to the vast diversity in available cloud services from the user point of view, it leads to several challenges to rank and select the potential cloud service. One of the plausible solutions for the problem can be obtained with the use of Rough Set Theory (RST) and available in the literature. Unfortunately, Rough Set Theory cannot deal with numerical values. One of the classical solutions to this problem can be obtained by using Fuzzy Rough Set. To the best of our knowledge, there is no working Fuzzy-Rough Set based brokerage architecture available which is used for minimizing attributes, search space and for ranking the service providers. In this paper, we proposed a Fuzzy Rough Set based Cloud Brokerage (FRSCB) architecture, which is responsible for service selection based on consumers Quality of Service (QoS) request. We propose to use Fuzzy Rough Set Theory (FRST) to minimize the number of attributes and searching space. We also did the QoS attribute categorization to identify functional and non-functional requirements and behavior of the attributes (static/dynamic). Finally, we develop an algorithm that recommends potential cloud services to the cloud consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cloud Service Broker. https://www.techopedia.com/definition/26518/cloud-broker. Accessed June 2016

  2. Zhao, B., Tung, Y.-K.: Determination of optimal unit hydrographs by linear programming. Water Resour. Manage. 8(2), 101–119 (1994)

    Article  Google Scholar 

  3. Sun, L., Dong, H., Hussain, F.K., Hussain, O.K., Chang, E.: Cloud service selection: state-of-the-art and future research directions. J. Netw. Comput. Appl. 45, 134–150 (2014)

    Article  Google Scholar 

  4. Garg, S.K., Versteeg, S., Buyya, R.: A framework for ranking of cloud computing services. Future Gener. Comput. Syst. 29(4), 1012–1023 (2013)

    Article  Google Scholar 

  5. Cloud Service Measurement Index Consortium (CSMIC), SMI framework. http://csmic.org. Accessed June 2016

  6. Ganghishetti, P., Wankar, R.: Quality of service design in clouds. CSI Commun. 35(2), 12–15 (2011)

    Google Scholar 

  7. Ganghishetti, P., Wankar, R., Almuttairi, R.M., Rao, C.R.: Rough set based quality of service design for service provisioning in clouds. In: Yao, J.T., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 268–273. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24425-4_36

    Chapter  Google Scholar 

  8. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  9. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Skowron, A., Jankowski, A., Swiniarski, R.W.: Foundations of rough sets. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 331–348. Springer, Heidelberg (2015). doi:10.1007/978-3-662-43505-2_21

    Chapter  Google Scholar 

  11. Jensen, R., Shen, Q.: Rough set-based feature selection. In: Rough Computing: Theories, Technologies, p. 70 (2008)

    Google Scholar 

  12. Gray, W.D., Boehm-Davis, D.A.: Milliseconds matter: an introduction to microstrategies and to their use in describing and predicting interactive behavior. J. Exp. Psychol.: Appl. 6(4), 322 (2000)

    Google Scholar 

  13. Schad, J., Dittrich, J., Quiané-Ruiz, J.-A.: Runtime measurements in the cloud: observing, analyzing, and reducing variance. Proc. VLDB Endow. 3(1–2), 460–471 (2010)

    Article  Google Scholar 

  14. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree compared. In: Grid Computing Environments Workshop, GCE 2008, pp. 1–10. IEEE (2008)

    Google Scholar 

  15. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  16. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 63(2), 411–423 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. R Core Team: R Language Definition. R Foundation for Statistical Computing, Vienna, Austria (2000)

    Google Scholar 

  18. R Development Environment. https://www.rstudio.com/. Accessed June 2016

  19. CRAN-package fgui: GUI interface. https://cran.r-project.org/web/packages/fgui/index.html. Accessed June 2016

  20. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw.: Pract. Exp. 41(1), 23–50 (2011)

    Google Scholar 

  21. Cloud Harmony. http://cloudharmony.com. Accessed June 2016

  22. Catteddu, D., Hogben, G., et al.: Cloud computing information assurance framework. In: European Network and Information Security Agency (ENISA) (2009)

    Google Scholar 

  23. Cloud Security Alliance (CSA): Cloud Control Matrix (CCM). https://cloudsecurityalliance.org/group/cloud-controls-matrix/. Accessed June 2016

  24. Jensen, R., Shen, Q.: New approaches to fuzzy-rough feature selection. IEEE Trans. Fuzzy Syst. 17(4), 824–838 (2009)

    Article  Google Scholar 

  25. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)

    Article  MATH  Google Scholar 

  26. CRAN-package roughsets. https://CRAN.R-project.org/package=RoughSets. Accessed July 2017

  27. Cloud service market: a comprehensive overview of cloud computing services. http://www.cloudservicemarket.info. Accessed June 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parwat Singh Anjana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Anjana, P.S., Wankar, R., Rao, C.R. (2017). Design of a Cloud Brokerage Architecture Using Fuzzy Rough Set Technique. In: Phon-Amnuaisuk, S., Ang, SP., Lee, SY. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2017. Lecture Notes in Computer Science(), vol 10607. Springer, Cham. https://doi.org/10.1007/978-3-319-69456-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69456-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69455-9

  • Online ISBN: 978-3-319-69456-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics