Skip to main content

Graph Combinatorics

  • Chapter
  • First Online:
  • 780 Accesses

Part of the book series: SpringerBriefs in Complexity ((BRIEFSCOMPLEXITY))

Abstract

In this chapter we go back to a formal level and discuss the connection between the maximum-entropy ensembles of constrained graphs considered so far and various combinatorial problems in the asymptotic limit of an infinite number of nodes. This seemingly mysterious connection is actually a natural consequence of the fact that, for any discrete combinatorial problem where we need to sample or enumerate the (microcanonical) configurations compatible with a given ‘hard’ constraint, there exists a dual (canonical) problem induced by the ‘soft’ version of the same constraint. Thus, if the microcanonical and canonical ensembles are asymptotically equivalent, one can operate in the canonical ensemble and, up to finite-size corrections, extend the results to the macrocanonical one, which is otherwise very hard to deal with. It is therefore intriguing to relate the feasibility of combinatorial problems to the property of ensemble equivalence. We show that, while graphs with a single constraint on the total number of links are ensemble-equivalent, graphs with given degree sequence are not. Unlike other examples in statistical physics, where the lack of ensemble equivalence arises from long-range interactions or non-additivity, here the novel mechansim is the extensivity of the number of constraints. We discuss important implications for graph combinatorics and for the choice of the correct ensemble in practical situations. The final result is an explicit connection between the solution of a combinatorial problem and the (non)equivalence between the two associated microcanonical and canonical ensembles.

The heavier the burden, the closer our lives come to the earth, the more real and truthful they become. Conversely, the absolute, absence of burden causes man to be lighter than air, to soar into, heights, take leave of the earth and his earthly being, and become only half real, his movements as free as they are, insignificant. What then shall we choose? Weight or lightness?

—Milan Kundera, Nesnesitelná Lehkost Bytí

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Since, in this particular case, the low value of the network density guarantees the LRA not to be biased, we can safely use it to generate several randomized versions of the actual network structure.

References

  1. J.H. van Lint, R.M. Wilson, A course in combinatorics (Cambridge university press, 2001)

    Google Scholar 

  2. J.M. Harris, J.L. Hirst, M.J. Mossinghoff, Combinatorics and graph theory (Springer, New York, 2008)

    Book  MATH  Google Scholar 

  3. L. Boltzmann, Wiener Berichte 2(76), 373–435 (1877)

    Google Scholar 

  4. J.W. Gibbs, Elementary Principles of Statistical Mechanics (Yale University Press, New Haven, 1902 - reprinted by Dover, New York, 1960)

    Google Scholar 

  5. R.S. Ellis, K. Haven, B. Turkington, J. Stat. Phys. 101, 999 (2000)

    Article  Google Scholar 

  6. R.S. Ellis, K. Haven, B. Turkington, Nonlinearity 15, 239 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Blume, V.J. Emery, R.B. Griffiths, Phys. Rev. A 4, 1071 (1971)

    Article  ADS  Google Scholar 

  8. J. Barré, D. Mukamel, S. Ruffo, Phys. Rev. Lett. 87, 030601 (2001)

    Article  ADS  Google Scholar 

  9. R.S. Ellis, H. Touchette, B. Turkington, Physica A 335, 518 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Lynden-Bell, Physica A 263, 293 (1999)

    Article  ADS  Google Scholar 

  11. P.-H. Chavanis, Astron. & Astrophys. 401, 15 (2003)

    Article  ADS  Google Scholar 

  12. M. D’Agostino, Phys. Lett. B 473, 219 (2000)

    Article  ADS  Google Scholar 

  13. J. Barré, B. Goncalves, Physica A 386, 212–218 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. H. Touchette, R.S. Ellis, B. Turkington, Physica A 340, 138–146 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  15. H. Touchette, Equivalence and nonequivalence of ensembles: Thermodynamic, macrostate, and measure levels. J. Stat. Phys. 159, 987–1016 (2015), arXiv:1403.6608

  16. F. den Hollander, Large Deviations, Fields Institute Monographs 14 (American Mathematical Society, Providence RI, 2000)

    Google Scholar 

  17. T. Squartini, D. Garlaschelli, New Journal of Physics 13, 083001 (2011)

    Article  ADS  Google Scholar 

  18. J. Park, M.E.J. Newman, Phys. Rev. E 70, 066117 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  19. K. Anand, G. Bianconi, Physical Review E 80(4), 045102 (2009)

    Article  ADS  Google Scholar 

  20. E.T. Jaynes, Phys. Rev. 106, 4 (1957)

    Article  Google Scholar 

  21. D. Garlaschelli, M.I. Loffredo, Phys. Rev. E 78, 015101(R) (2008)

    Article  ADS  Google Scholar 

  22. H. Robbins, Amer. Math. Monthly 62, 26–29 (1955)

    Article  MathSciNet  Google Scholar 

  23. E.A. Bender, Discrete Math. 10, 217–223 (1974)

    Article  MathSciNet  Google Scholar 

  24. B.D. McKay, N.C. Wormald, Combinatorica 11, 369–382 (1991)

    Article  MathSciNet  Google Scholar 

  25. M. Boguñá, R. Pastor-Satorras, A. Vespignani, Eur. Phys. J. B 38, 205–209 (2004)

    Article  ADS  Google Scholar 

  26. T. Squartini, J. de Mol, F. den Hollander, D. Garlaschelli, Breaking of ensemble equivalence in networks. Phys. Rev. Lett. 115, 268701 (2015)

    Article  ADS  Google Scholar 

  27. T. Squartini, R. Mastrandrea, D. Garlaschelli, New J. Phys. 17, 023052 (2015)

    Article  ADS  Google Scholar 

  28. D. Garlaschelli, F. den Hollander, A. Roccaverde, Ensemble nonequivalence in random graphs with modular structure. Journal of Physics A: Mathematical and Theoretical 50, 015001 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Garlaschelli .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Squartini, T., Garlaschelli, D. (2017). Graph Combinatorics. In: Maximum-Entropy Networks. SpringerBriefs in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-69438-2_5

Download citation

Publish with us

Policies and ethics