Advertisement

Integrated Risk Measurement Approach: A Case Study

  • Vitantonio MatarazzoEmail author
  • Mario Vellella
Chapter
Part of the Palgrave Macmillan Studies in Banking and Financial Institutions book series (SBFI)

Abstract

This chapter aims to provide an overview of the main components of an operational risk measurement framework developed by financial intermediaries for which operational risk is more important. This methodology integrates a historical analysis with a scenario analysis. This chapter describes the loss data collection, the assumption and the statistical tools used in the implemented approach. It also describes the methods used to integrate the Expected Lossess (EL) and the Unexpected Lossess (UL) resulting from the two different analyses.

Keywords

Risk mapping Extreme value theory Loss distribution approach Scenario analysis Data integration 

References

  1. Agostini, A., Talamo, P., & Vecchione, V. (2010). Combining operational loss data with expert opinions through advanced credibility theory. The Journal of Operational Risk, 5, 3–28.CrossRefGoogle Scholar
  2. Andreatta, C., & Mazza, D. (2013). Alternative approaches to generalized Pareto distribution shape parameter estimation through expert opinions. The Journal of Operational Risk, 8(2), 47–72.CrossRefGoogle Scholar
  3. Bank of Italy. (2013). Circolare 285/2013. Disposizioni di vigilanza per le banche. https://www.bancaditalia.it/compiti/vigilanza/normativa/archivio-norme/circolari/c285/index.html.
  4. BCBS. (2006). International convergence of capital measurement and capital standards: A revised framework. Comprehensive version, Basel Committee on Banking Supervision. http://www.bis.org/publ/bcbs128.htm.
  5. Chernobai, A. S., Rachev, S. T., & Fabozzi, F. J. (2008). Operational risk: A guide to Basel II capital requirements, models, and analysis. Hoboken, NJ: Wiley. Google Scholar
  6. Cruz, M. G. (2002). Modeling, measuring and hedging operational risk. Hoboken, NJ: Wiley.Google Scholar
  7. Cruz, M. G. (2004). Operational risk modelling and analysis: Theory and practice. London: Risk Books.Google Scholar
  8. European Parliament and Council. (2013a). Directive 2013/36/EU on access to the activity of credit institutions and the prudential supervision of credit institutions and investment firms, amending Directive 2002/87/EC. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013L0036&from=IT.
  9. European Parliament and Council. (2013b). Regulation (EU) No. 575/2013 on prudential requirements for credit institutions and investment firms and amending Regulation (EU) No. 648/2012. http://eur-lex.europa.eu/legal-content/IT/TXT/?uri=celex%3A32013R0575.
  10. CEBS. (2010). CEBS guidelines on stress testing (GL32). Committee of European Banking Supervisors. https://www.eba.europa.eu/documents/10180/16094/ST_Guidelines.pdf.
  11. EBA. (2014). Guidelines on common procedures and methodologies for the supervisory review and evaluation process. European Banking Authority. https://www.eba.europa.eu/-/eba-publishes-final-guidelines-on-srep-methodologies-and-processes.
  12. EBA. (2015). RTS on AMA assessment. European Banking Authority. https://www.eba.europa.eu/documents/10180/1100516/EBA-RTS-2015-02+RTS+on+AMA+assesment.pdf.
  13. EBA. (2016). Guidelines on ICAAP and ILAAP information collected for SREP purposes. European Banking Authority. https://www.eba.europa.eu/-/eba-publishes-final-guidelines-on-icaap-and-ilaap-information.
  14. Giudici, P., & Bilotta, A. (2004). Modelling operational losses: A Bayesian approach. Quality and Reliability Engineering International, 20(5), 407–417.CrossRefGoogle Scholar
  15. Ergashev, B. A. (2012). A theoretical framework for incorporating scenarios into operational risk modeling. Journal of Financial Services Research, 41, 45–161.CrossRefGoogle Scholar
  16. Embrechts, P., Klüppelberg, C., & Mikosch, T. (1997). Modelling extremal events. Applications of Mathematics, 33.Google Scholar
  17. Frachot, A., Moudoulaud, O., & Roncalli, T. (2004). Loss distribution approach in practice. In The Basel handbook: A guide for financial practitioners (pp. 369–396). London: Risk Books.Google Scholar
  18. Giudici, P., & Stinco, G. (2004). Modelli avanzati sui rischi operativi: l’approccio delle reti bayesiane. Bancaria, 12, 55–62.Google Scholar
  19. King, J. L. (2001). Operational risk: Measurements and modelling. Hoboken, NJ: Wiley.Google Scholar
  20. Klugman, S. A., Panjer, H. H., & Willmot, G. E. (2008). Loss models: From data to decisions. Hoboken, NJ: Wiley.Google Scholar
  21. Mignola, G., & Ugoccioni, R. (2007). Statistical approach to operational risk management. Turin, Italy: Sanpaolo IMI Group.Google Scholar
  22. Moscadelli, M. (2004). The modelling of operational risk: Experience with the analysis of the data collected by the Basel Committee. Bank of Italy, Economic Research and International Relations Area, No. 517.Google Scholar
  23. Shevchenko, P. V. (2011). Modelling operational risk using Bayesian inference. Berlin: Springer.Google Scholar
  24. Shevchenko, P. V., & Peters, G. W. (2013). Loss distribution approach for operational risk capital modelling under Basel II: Combining different data sources for risk estimation. arXiv preprint arXiv: 1306.1882.Google Scholar
  25. Vellella, M. (1999). Valorizzazione del capitale economico e rischio operativo nella banca. Banche e Banchieri, No. 6.Google Scholar
  26. Vellella, M. (2004). Le problematiche di gestione del rischio operativo. In Leone (2004), Capital Management. CEDAM.Google Scholar
  27. Vellella, M. (2005). La gestione dei rischi operativi nelle banche: alcuni spunti di riflessione sulle scelte organizzative. Banche e Banchieri, No. 3.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Poste ItalianeBancoPostaRomeItaly

Personalised recommendations