Skip to main content

Statistical Estimation in Global Random Search Algorithms in Case of Large Dimensions

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10556)

Abstract

We study asymptotic properties of optimal statistical estimators in global random search algorithms when the dimension of the feasible domain is large. The results obtained can be helpful in deciding what sample size is required for achieving a given accuracy of estimation.

Keywords

  • Global optimization
  • Extreme value
  • Random search
  • Estimation of end-point

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhigljavsky, A.: Mathematical Theory of Global Random Search. Leningrad University Press (1985). in Russian

    Google Scholar 

  2. Zhigljavsky, A.: Branch and probability bound methods for global optimization. Informatica 1(1), 125–140 (1990)

    MATH  MathSciNet  Google Scholar 

  3. Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer, New York (2008)

    MATH  Google Scholar 

  4. Zhigljavsky, A.: Theory of Global Random Search. Kluwer Academic Publishers, Boston (1991)

    CrossRef  Google Scholar 

  5. Zhigljavsky, A., Hamilton, E.: Stopping rules in k-adaptive global random search algorithms. J. Global Optim. 48(1), 87–97 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Zilinskas, A., Zhigljavsky, A.: Branch and probability bound methods in multi-objective optimization. Optim. Lett. 10(2), 341–353 (2016). doi:10.1007/s11590-014-0777-z

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of the first author was partially supported by the SPbSU project No. 6.38.435.2015 and the RFFI project No. 17-01-00161. The work of the third author was supported by the Russian Science Foundation, project No. 15-11-30022 ‘Global optimization, supercomputing computations, and applications’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Pepelyshev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pepelyshev, A., Kornikov, V., Zhigljavsky, A. (2017). Statistical Estimation in Global Random Search Algorithms in Case of Large Dimensions. In: Battiti, R., Kvasov, D., Sergeyev, Y. (eds) Learning and Intelligent Optimization. LION 2017. Lecture Notes in Computer Science(), vol 10556. Springer, Cham. https://doi.org/10.1007/978-3-319-69404-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69404-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69403-0

  • Online ISBN: 978-3-319-69404-7

  • eBook Packages: Computer ScienceComputer Science (R0)