Skip to main content

Global Optimization Challenges in Structured Low Rank Approximation

  • 1011 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10556)

Abstract

In this paper, we investigate the complexity of the numerical construction of the so-called Hankel structured low-rank approximation (HSLRA). Briefly, HSLRA is the problem of finding a rank r approximation of a given Hankel matrix, which is also of Hankel structure.

Keywords

  • Structured low rank approximation
  • Hankel matrices
  • Time series analysis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gillard, J.: Cadzow’s basic algorithm, alternating projections and singular spectrum analysis. Stat. Interface 3(3), 335–343 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Gillard, J., Zhigljavsky, A.: Analysis of structured low rank approximation as an optimization problem. Informatica 22(4), 489–505 (2011)

    MATH  MathSciNet  Google Scholar 

  3. Gillard, J., Zhigljavsky, A.: Optimization challenges in the structured low rank approximation problem. J. Global Optim. 57(3), 733–751 (2013)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Gillard, J.W., Kvasov, D.: Lipschitz optimization methods for fitting a sum of damped sinusoids to a series of observations. Stat. Interface 10(1), 59–70 (2017)

    CrossRef  MathSciNet  Google Scholar 

  5. Gillard, J., Zhigljavsky, A.: Stochastic algorithms for solving structured low-rank matrix approximation problems. Commun. Nonlinear Sci. Numer. Simul. 21(1), 70–88 (2015)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Gillard, J., Zhigljavsky, A.: Weighted norms in subspace-based methods for time series analysis. Numer. Linear Algebra Appl. 23(5), 947–967 (2016)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Gillis, N., Glineur, F.: Low-rank matrix approximation with weights or missing data is NP-hard. SIAM J. Matrix Anal. Appl. 32(4), 1149–1165 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Markovsky, I.: Low Rank Approximation: Algorithms, Implementation, Applications. Springer, London (2012)

    CrossRef  MATH  Google Scholar 

  9. Park, H., Zhang, L., Rosen, J.B.: Low rank approximation of a Hankel matrix by structured total least norm. BIT Numer. Math. 39(4), 757–779 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On the least-squares fitting of data by sinusoids. In: Pardalos, P.M., Zhigljavsky, A., Žilinskas, J. (eds.) Advances in Stochastic and Deterministic Global Optimization, Chap. 11. SOIA, vol. 107, pp. 209–226. Springer, Cham (2016). doi:10.1007/978-3-319-29975-4_11

    CrossRef  Google Scholar 

  11. Sergeyev, Y.D.: Numerical computations and mathematical modelling with infinite and infinitesimal numbers. J. Appl. Math. Comput. 29(1–2), 177–195 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the project No. 15-11-30022 “Global optimization, supercomputing computations, and applications” of the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Gillard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gillard, J., Zhigljavsky, A. (2017). Global Optimization Challenges in Structured Low Rank Approximation. In: Battiti, R., Kvasov, D., Sergeyev, Y. (eds) Learning and Intelligent Optimization. LION 2017. Lecture Notes in Computer Science(), vol 10556. Springer, Cham. https://doi.org/10.1007/978-3-319-69404-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69404-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69403-0

  • Online ISBN: 978-3-319-69404-7

  • eBook Packages: Computer ScienceComputer Science (R0)