Ultrasound Doppler Velocity and Imaging

  • Toshiyo Tamura


Ultrasound (US) is a commonly used cardiac imaging tool in clinical practice. It is a noninvasive, sensitive, and reproducible technique for identifying and quantifying subclinical diseases and for evaluating risk of cardiovascular diseases. Portable handheld US devices have become popular. In this section, the principles of US are reviewed, portable handheld US devices are introduced, and some of their applications of point-of-care technologies are presented.


Ultrasound imaging Doppler velocity Pulse Doppler flowmeter Pulse repetition frequency Point of care Bladder volume 


  1. 1.
    Otto, C. M. (2013). Textbook of clinical echocardiography (5th ed.p. 576). St. Louis: Elsevier Health Sciences.Google Scholar
  2. 2.
    Otto, C. M., Schwaegler, R. G., & Freeman, R. V. (2015). Echocardiography review guide E-Book: Companion to the textbook of clinical echocardiography (3rd ed., p. 432). Saunders Elsevier.Google Scholar
  3. 3.
    Hung, J., Lang, R., Flachskampf, F., Shernan, S. K., McCulloch, M. L., Adams, D. B., Thomas, J., Vannan, M., & Ryan, T. (2007). 3D echocardiography: A review of the current status and future directions. Journal of the American Society of Echocardiography, 20, 213–233.CrossRefGoogle Scholar
  4. 4.
    Satomura, S. (1959). Study of the flow patterns in peripheral arteries by ultrasonic. Journal of the Acoustical Society of Japan, 15, 151–159. With English abstract.Google Scholar
  5. 5.
    Franklin, D. L., Schelegel, W., & Ryshumer, R. F. (1961). Blood flow measured by Doppler frequency shift of backscattered ultrasound. Science, 134, 564–565.CrossRefGoogle Scholar
  6. 6.
    Wells, P. N. T. (1969). A range—Gated ultrasound Doppler system. Medical & Biological Engineering, 7, 641–652.CrossRefGoogle Scholar
  7. 7.
    Baker, D. W. (1970). Pulsed ultrasound Doppler blood flow sensing. IEEE Transactions on Sonics and Ultrasonics, 17, 170–185.CrossRefGoogle Scholar
  8. 8.
    Ali, M., Magee ,D., Dasgupta, U. (2008). Signal processing overview of ultrasound systems for medical imaging (White paper, SPRAB12). Texas Instrumentsp. 27.Google Scholar
  9. 9.
    Kasai, C., Namekawa, K., Koyano, A., & Omoto, R. (1985). Real-time two-dimensional blood flow imaging using an autocorrelation technique. IEEE Transactions on Sonics and Ultrasonics, SU-32(3), 458–464.CrossRefGoogle Scholar
  10. 10.
    Manasia, A. R., Nagaraj, H. M., Kodali, R. B., Croft, L. B., Oropello, J. M., Kohli-Seth, R., Leibowitz, A. B., Rosanna DelGiudice, R. N., Hufanda, J. F., Benjamin, E., & Goldman, M. E. (2005). Feasibility and potential clinical utility of goal-directed transthoracic echocardiography performed by noncardiologist intensivists using a small hand-carried device (sonoheart) in critically ill patients. Journal of Cardiothoracic and Vascular Anesthesia, 19(2), 155–159.CrossRefGoogle Scholar
  11. 11.
    Frederiksen, C. A., Juhl-Olsen, P., Larsen, U. T., Nielsen, D. G., Eika, B., & Sloth, E. (2010). New pocket echocardiography device is interchangeable with high-end portable system when performed by experienced examiners. Acta Anaesthesiologica Scandinavica, 54(10), 1217–1223.CrossRefGoogle Scholar
  12. 12.
    Bernier-Jean, A., Albert, M., Shiloh, A. L., Eisen, L. A., Williamson, D., & Beaulieu, Y. (2017). The diagnostic and therapeutic impact of point-of-care ultrasonography in the intensive care unit. Journal of Intensive Care Medicine, 32(3), 197–203.CrossRefGoogle Scholar
  13. 13.
    Kobal, S. L., Liel-Cohen, N., Shimony, S., Neuman, Y., Konstantino, Y., Dray, E. M., Horowitz, I., & Siegel, R. J. (2016). Impact of point-of-care ultrasound examination on triage of patients with suspected cardiac disease. American Journal of Cardiology, 118, 1583–1587.CrossRefGoogle Scholar
  14. 14.
    Rigby, D., & Housami, F. A. (2009). Using bladder ultrasound to detect urinary retention in patients. Nursing Times, 105(21)
  15. 15.
    Ouslander, J. G., Simmons, S., Tuico, E., Nigam, J. G., Fingold, S., Bates-Jensen, B., & Schnelle, J. F. (1994). Use of a portable ultrasound device to measure post-void residual volume among incontinent nursing home residents. Journal of the American Geriatrics Society, 42(11), 1189–1192.CrossRefGoogle Scholar
  16. 16.
    Choe, J. H., Lee, J. Y., & Lee, K.-S. (2007). Accuracy and precision of a new portable ultrasound scanner, the BME-150A, in residual urine volume measurement: A comparison with the bladderScan BVI 3000. International Urogynecology Journal and Pelvic Floor Dysfunction, 18(6), 641–644.CrossRefGoogle Scholar
  17. 17.
    Huang, Y.-H., Bih, L.-I., Chen, S.-L., Tsai, S.-J., & Teng, C.-H. (2004). The accuracy of ultrasonic estimation of bladder volume: A comparison of portable and stationary equipment. Archives of Physical Medicine and Rehabilitation, 85, 138–141.CrossRefGoogle Scholar
  18. 18.
    Schnider, P., Birner, P., Gendo, A., Ratheiser, K., & Auff, E. (2000). Bladder volume determination: Portable 3-D versus stationary 2-D ultrasound device. Archives of Physical Medicine and Rehabilitation, 81(1), 18–21.CrossRefGoogle Scholar
  19. 19.
    Byun, S.-S., Kim, H. H., Lee, E., Paick, J.-S., Kamg, W., & Oh, S.-J. (2003). Accuracy of bladder volume determinations by ultrasonography: Are they accurate over entire bladder volume range? Urology, 62(4), 656–660.CrossRefGoogle Scholar
  20. 20.
    Dicuio, M., Pomara, G., Menchini Fabris, F., Ales, V., Dahlstrand, C., & Morelli, G. (2005). Measurements of urinary bladder volume: Comparison of five ultrasound calculation methods in volunteers. Archivio Italiano di Urologia e Andrologia, 77(1), 60–62.Google Scholar
  21. 21.
    Bih, L.-I., Ho, C.-C., Tsai, S.-J., Lai, Y.-C., & Chow, W. (1998). Bladder shape impact on the accuracy of ultrasonic estimation of bladder volume. Archives of Physical Medicine and Rehabilitation, 79, 1553–1556.CrossRefGoogle Scholar
  22. 22.
    Hvarness, H., Skjoldbye, B., & Jakobsen, H. (2002). Urinary bladder volume measurements: Comparison of three ultrasound calculation methods. Scandinavian Journal of Urology and Nephrology, 36(3), 177–181.CrossRefGoogle Scholar
  23. 23.
    Manuela, V., Boerman Otto, C., de Chris, K., Mark, R., Arend, H., Egbert, O., Jansen John, A., & Frank, W. X. (2014). Preclinical Imaging in Bone Tissue Engineering. Tissue Engineering Part B: Review, 20(6), 578–595.CrossRefGoogle Scholar
  24. 24.
    Protopappas, V. C., Baga, D. A., Fotiadis, D. I., Likas, A. C., Papachristos, A. A., & Malizos, K. N. (2005). An ultrasound wearable system for the monitoring and acceleration of fracture healing in long bones. Biomedical Engineering IEEE Transactions on Biomedical Engineering, 52, 1597–1608.CrossRefGoogle Scholar
  25. 25.
    Barbieri, G., Mazzer, N., Ribeiro, E. A., Nogueira-Barbosa, M. H., & Barbieri, C. H. (2012). A comparative analysis between ultrasonometry and computer-aided tomography to evaluate bone healing. Journal of Orthopaedic Research, 30, 1076–1082.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Future Robotics OrganizationWaseda UniversityShinjukuJapan

Personalised recommendations