Advertisement

Blood Pressure

Chapter

Abstract

Blood pressure is the most important physiological parameter. A cuff-based sphygmomanometer is commonly used but handling needs great care in terms of cuff size, position of cuff, and so on. A simple handling of wearable blood pressure monitor is desired. Currently, watch-type blood pressure monitor is under development. Whereas cuffless blood pressure monitor has been attempted. Either difference of two pulse wave transit time or R wave of ECG corresponding pulse wave is used to estimate in blood pressure based on biomechanical properties. In this chapter, currently available cuff-based sphygmomanometer is reviewed and then the development of cuffless blood pressure is presented.

Keywords

Hypertension Cuff based Blood stiffness PPG ECG Cuffless Pulse transit time (PTT) Pulse arrival time (PAT) Pulse wave velocity (PWV) 

References

  1. 1.
    Whelton, P. K., Carey, R. M., Aronow, W. S. et al. (2017). ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults hypertension. HYP.0000000000000065, originally published November 13, 2017.  https://doi.org/10.1161/HYP.0000000000000065
  2. 2.
    Magid, D. J., Olson, K. L., Billups, S. J., Wagner, N. M., Lyon, E. E., & Kroner, BA. (2013). A Pharmacist-Led, American Heart Association Heart360 Web-Enabled Home Blood Pressure Monitoring Program Circulation: Cardiovascular Quality and Outcomes, Circoutcomes, 112968172.Google Scholar
  3. 3.
    Williams, B., Lacy, P. S., Thom, S. M., Cruickshank, K., Stanton, A., Collier, D., Hughes, A. D., Thurston, H., & O’Rourke, M. (2006). Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: Principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation, 113, 1213–1225.CrossRefGoogle Scholar
  4. 4.
    McEniery, C. M., Cockcroft, J. R., Roman, M. J., Franklin, S. S., & Wilkinson, I. B. (2014). Central blood pressure: Current evidence and clinical importance. European Heart Journal, 35(26), 1719–1725.CrossRefGoogle Scholar
  5. 5.
    WHO Key consideration and step-by-step guidline: Developing national strategies for phasing out mercury-containing thermometers and sphygmomanometers in health care, including in the context of the Minamata Convention on Mercury. http://www.who.int/ipcs/assessment/public_health/WHOGuidanceReportonMercury2015.pdf. Accessed 31 Jan 2017.
  6. 6.
    Campbell, N. R., Chockalingam, A., Fodor, J. G., & McKay, D. W. (1990). Accurate, reproducible measurement of blood pressure. CMAJ, 143, 19–24.Google Scholar
  7. 7.
    Pickering, T. G., Hall, J. E., Appel, L. J., Falkner, B. E., Graves, J., Hill, M. N., Jones, D. W., Kurtz, T., Sheps, S. G., & Roccella, E. J. (2005). Recommendations for blood pressure measurement in humans and experimental animals part 1: Blood pressure measurement in humans: A statement for professionals from the subcommittee of professional and public education of the American Heart Association Council on High Blood Pressure Research. Circulation, 111, 697–716.CrossRefGoogle Scholar
  8. 8.
    Borow, K. M., & Newburger, J. W. (1982). Noninvasive estimation of central aortic pressure using the oscillometric method for analyzing systemic artery pulsatile blood flow: Comparative study of indirect systolic, diastolic, and mean brachial artery pressure with simultaneous direct ascending aortic pressure measurement. American Heart Journal, 103(5), 879–886.CrossRefGoogle Scholar
  9. 9.
    Shimazu, H. (2017, February). Method for and evaluation of the indirect measurement of arterial stiffness index. http://www.osachi.jp/English/Technology/detail/ASI.html. Accessed 20.
  10. 10.
    Ding, X.-R., Ni, N. Z., Yang, G.-Z., Pettigrew, R. I., Lo, B., Miao, F., Li, Y., Liu, J., & Zhang, Y.-T. (2016). Continuous blood pressure measurement from invasive to unobtrusive: Celebration of 200th birth anniversary of Carl Ludwig. IEEE Journal of Biomedical and Health Informatics, 20, 1455–1465.CrossRefGoogle Scholar
  11. 11.
    Penaz, J. (1973). Photoelectronic measurement of blood pressure, volume and flow in the finger. Digest of the 10th international conference on Medical and Biological Engineering, Dresden, Germany, p. 104.Google Scholar
  12. 12.
    van Egmond, J., Hasenbos, M., & Crul, J. F. (1985). Invasive v. non-invasive measurement of arterial pressure. Comparison of two automatic methods and simultaneously measured direct intra-arterial pressure. British Journal of Anaesthesia, 57, 434–444.CrossRefGoogle Scholar
  13. 13.
    Parati, G., Casadei, R., Groppelli, A., Di Rienzo, M., & Mancia, G. (1989). Comparison of finger and intra-arterial blood pressure monitoring at rest and during laboratory testing. Hypertension, 13(6 Pt 1), 647–655.CrossRefGoogle Scholar
  14. 14.
    Drzewiecki, G. M., Melbin, J., & Noordergraaf, A. (1983). Arterial tonometry: Review and analysis. Journal of Biomechanics, 16, 141–152.CrossRefGoogle Scholar
  15. 15.
    Smulyan, H., Siddiqui, D. S., Carlson, R. J., London, G. M., & Safar, M. E. (2003). Clinical utility of aortic pulses and pressures calculated from applanated radialartery pulses. Hypertension, 42, 150–155.CrossRefGoogle Scholar
  16. 16.
    Miyashita, H. (2012). Clinical assessment of Central Blood Pressure. Current Hypertension Reviews, 8(2), 80–90.CrossRefGoogle Scholar
  17. 17.
    Garcia-Ortiz, L., Recio-Rodríguez, J. I., Canales-Reina, J. J., Cabrejas-Sánchez, A., Gomez-Arranz, A., Magdalena-Belio, J. F., Guenaga-Saenz, N., Agudo-Conde, C., & Gomez-Marcos, M. A. (2012). on behalf of the EVIDENT Group: Comparison of two measuring instruments, B-pro and SphygmoCor system as reference, to evaluate central systolic blood pressure and radial augmentation index. Hypertension Research, 35, 617–623.CrossRefGoogle Scholar
  18. 18.
    Ott, C., Haetinger, S., Schneider, M. P., Pauschinger, M., & Schmieder, R. E. (2012). Comparison of two noninvasive devices for measurement of central systolic blood pressure with invasive measurement during cardiac catheterization. Journal of Clinical Hypertension (Greenwich, Conn.), 14, 575–579.CrossRefGoogle Scholar
  19. 19.
    Townsend, R. R., Wilkinson, I. B., Schiffrin, E. L., Avolio, A. P., Chirinos, J. A., Cockcroft, J. R., Heffernan, K. S., Lakatta, E. G., McEniery, C. M., Mitchell, G. F., Najjar, S. S., Nichols, W. W., Urbina, E. M., & Weber, T. (2015). Recommendations for improving and standardizing vascular research on arterial stiffness. A scientific statement from the American Heart Association. Hypertension, 66, 698–722.CrossRefGoogle Scholar
  20. 20.
    Asmar, R., Benetos, A., Topouchian, J., Laurent, P., Pannier, B., Brisac, A. M., Target, R., & Levy, B. I. (1995). Assessment of arterial distensibility by automatic pulse wave velocity measurement validation and clinical application studies. Hypertension, 26(3), 485–490.CrossRefGoogle Scholar
  21. 21.
    Chen, W., Kobayashi, T., Ichikawa, S., Takeuchi, Y., & Togawa, T. (2000). Continuous estimation of systolic BP using the pulse arrival time and intermittent calibration. Medical and Biological Engineering Computing, 38(5), 569–574.CrossRefGoogle Scholar
  22. 22.
    Poon, C. C. Y., & Zhang, Y. T. (2005). Cuff-less and noninvasive measurements of arterial BP by pulse transit time. Proceedings of the 27th international conference on IEEE-Engineering in Medicine and Biology Society Aug (EMBC 2005), pp. 5877–5880.Google Scholar
  23. 23.
    IEEE standard for Wearable, Cuffless Blood Pressure Measuring Devices: IEEE std 1708, 2014.Google Scholar
  24. 24.
    Zhang, G., Gao, M., Xu, D., Olivier, N. B., & Mukkamala, R. (2011). Pulse arrival time is not an adequate surrogate for pulse transit time as a marker of blood pressure. Journal of Applied Physiology (1985), 111(6), 1681–1686.CrossRefGoogle Scholar
  25. 25.
    Sola, J., Proenc, M., Ferrario, D., Porchet, J.-A., Falhi, A., Grossenbacher, O., Allemann, Y., Rimoldi, S. F., & Sartori, C. (2013). Noninvasive and nonocclusive blood pressure estimation via a chest sensor. IEEE Transactions on Biomedical Engineering, 60(12), 3505–3513.CrossRefGoogle Scholar
  26. 26.
    Wong, M. Y., Pickwell-MacPherson, E., Zhang, Y. T., & Cheng, J. C. (2011). The effects of pre-ejection period on post-exercise systolic blood pressure estimation using the pulse arrival time technique. European Journal Applied Physiology, 111(1), 135–144.CrossRefGoogle Scholar
  27. 27.
    Wibmer, T., Doering, K., Kropf-Sanchen, C., Rüdiger, S., Blanta, I., Stoiber, K. M., Rottbauer, W., & Schumann, C. (2014). Pulse transit time and blood pressure during cardiopulmonary exercise tests. Physiological Research, 63, 287–296.Google Scholar
  28. 28.
    Gao, M., Olivier, N. B., & Mukkamala, R. (2016). Comparison of noninvasive pulse transit time estimates as markers of blood pressure using invasive pulse transit time measurements as a reference. Physiological Reports, 4(10), e12768.CrossRefGoogle Scholar
  29. 29.
    Zhang, G., Cottrell, A. C., Henry, I. C, & McCombie, D. B. (2016). Assessment of pre-ejection period in ambulatory subjects using seismocardiogram in a wearable blood pressure monitor. 2016 38th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3386–3389.Google Scholar
  30. 30.
    Martin, S. L., Carek, A. M., Kim, C. S., Ashouri, H., Inan, O. T., Hahn, J. O., & Mukkamala, R. (2016). Weighing scale-based pulse transit time is a superior marker of blood pressure than conventional pulse arrival time. Scientific Reports, 6, 39273.  https://doi.org/10.1038/srep39273.CrossRefGoogle Scholar
  31. 31.
    ANSI/AAMI/ISO. ANSI/AAMI/ISO 81060–2:20132: Non-invasive sphygmonanometers–Part 2: Clinical investigation of automated measurement type. American National Standard 1 A.D.Google Scholar
  32. 32.
    Friedman, B. A., Alpert, B. S., Osborn, D., et al. (2008). Assessment of the validation of blood pressure monitors: A statistical reappraisal. Blood Pressure Monitoring, 13, 187–191.CrossRefGoogle Scholar
  33. 33.
    Stergiou, G. S., Karpettas, N., Atkins, N., & O’Brien, E. (2010). European society of hypertension international protocol for the validation of blood pressure monitors: A critical review of its application and rationale for revision. Blood Pressure Monitoring, 15(1), 39–48.CrossRefGoogle Scholar
  34. 34.
    Stergiou, G. S., Parati, G., Asmar, R., et al. (2012). European society of hypertension working group on blood pressure monitoring. Requirements for professional office blood pressure monitors. Journal of Hypertension, 30, 537–542.CrossRefGoogle Scholar
  35. 35.
    Beime, B., Deutsch, C., Gomez, T., Zwingers, T., Mengden, T., & Bramlage, P. (2016). Validation protocols for blood pressure-measuring devices: Status quo and development needs. Blood Pressure Monitoring, 21(1), 1–8.CrossRefGoogle Scholar
  36. 36.
    Dable educational trust Blood pressure monitories, validations, paper and reviews. http://www.dableducational.org/ index.html. Accessed 3 Mar 2017.
  37. 37.
    Topouchain, J., Zelveyan, P., Hakobyan, Z., Melkonyan, A, & Asmar, R.(2016, July 8). Validation of the QARDIO QARDIOARM upper arm blood pressure monitor, in oscillometry mode, for self measurement in persons fulfilling the population as described in this paper, according to the European Society of Hypertension International Protocol revision 2010. [Internet]. Dublin: dablEducational Trust, 4 p. Available from http://www.dableducational.org/Publications/2016/ESH-IP 2010 Validation of QARDIO QARDIOARM.pdf
  38. 38.
    Takahashi, H. (2016, November 28) Validation of the Omron EVOLV (HEM-7600T-E) upper arm blood pressure monitor, in oscillometry mode, for self measurement in a general population, according to the European Society of Hypertension International Protocol revision 2010 [Internet]. Dublin: dabl Educational Trust. Available from http://www.dableducational.org/Publications/2016/ESH-IP 2010 Validation of HEM-7600T-E.pdf
  39. 39.
    Khoshdel, A. R., Carney, S., & Gillies, A. (2010). The impact of arm position and pulse pressure on the validation of a wrist-cuff blood pressure measurement device in a high risk population. International Journal of General Medicine, 3, 119–125.CrossRefGoogle Scholar
  40. 40.
    Bloch, M. J., & Basile, J. N. (2011). New British guidelines mandate ambulatory blood pressure monitoring to diagnose hypertension in all patients: Not ready for prime time in the United States. The Journal of Clinical Hypertension, 13(11), 785–786.CrossRefGoogle Scholar
  41. 41.
    US. Preventive Service ask Force, Final recommendation statement, High blood pressure in adults, screening. https://www.uspreventiveservicestaskforce.org/. Accessed 3 Mar 2017.
  42. 42.
    O’Brien, E. (2013). On behalf of the European Society of Hypertension Working Group on Blood Pressure Monitoring European Society of Hypertension Position Paper on Ambulatory Blood Pressure Monitoring. Journal of Hypertension, 31, 1731–1768.CrossRefGoogle Scholar
  43. 43.
    Parati, G., Stergiou, G., O'Brien, E., Asmar, R., Beilin, L., Bilo, G., Clement, D., de la Sierra, A., de Leeuw, P., Dolan, E., Fagard, R., Graves, J., Head, G. A., Imai, Y., Kario, K., Lurbe, E., Mallion, J. M., Mancia, G., Mengden, T., Myers, M., Ogedegbe, G., Ohkubo, T., Omboni, S., Palatini, P., Redon, J., Ruilope, L. M., Shennan, A., Staessen, J. A., vanMontfrans, G., Verdecchia, P., Waeber, B., Wang, J., Zanchetti, A., & Zhang, Y. (2014). European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. Journal of Hypertension, 32(7), 1359–1366.CrossRefGoogle Scholar
  44. 44.
    Palatini, P., Frigo, G., Bertolo, O., Roman, E., Da Corta, R., & Winnicki, M. (1998). Validation of the 2012 device for ambulatory blood pressure monitoring and evaluation of performance according to subjects’ characteristics. Blood Pressure Monitoring, 3, 255–260.Google Scholar
  45. 45.
    Jones, S. C., Bilous, M., Winship, S., Finn, P., & Goodwin, J. (2004). Validation of the OSCAR 2 oscillometric 24-hour ambulatory blood pressure monitor according to the International Protocol for the validation of blood pressure measuring devices. Blood Pressure Monitoring, 9, 219–223.CrossRefGoogle Scholar
  46. 46.
    Yip, G. W., So, H. K., Li, A. M., Tomlinson, B., Wong, S. N., & Sung, R. Y. (2012). Validation of A&D TM-2430 upper-arm blood pressure monitor for ambulatory blood pressure monitoring in children and adolescents, according to the British Hypertension Society protocol. Blood Pressure Monitoring, 17(2), 76–79.CrossRefGoogle Scholar
  47. 47.
    Nair, D., Tan, S.-Y., Gan, H.-W., Lim, S.-F., Tan, J., Zhu, M., Gao, H., Chua, N.-H., Peh, W.-L., & Mak, K.-H. (2008). The use of ambulatory tonometric radial arterial wave capture to measure ambulatory blood pressure: The validation of a novel wrist-bound device in adults. Journal of Human Hypertension, 22, 220–222.Google Scholar
  48. 48.
    Wong, M. Y. M., Poon, C. C. Y., & Zhang, Y.-T. (2009). An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: A half year study on normotensive subjects. Cardiovascular Engineering (Dordrecht, Netherlands)., 9, 32–38.Google Scholar
  49. 49.
    Masè, M., Walter Mattei, W., Cucino, R., Faes, L., & Nollo, G. (2011). Feasibility of cuff-free measurement of systolic and diastolic arterial blood pressure. Journal of Electrocardiology, 44, 201–207.CrossRefGoogle Scholar
  50. 50.
    Gesche, H., Grosskurth, D., Küchler, G., & Patzak, A. (2012). Continuous blood pressure measurement by using the pulse transit time: Comparison to a cuff-based method. European Journal of Applied Physiology, 112, 309–315.CrossRefGoogle Scholar
  51. 51.
    Younessi Heravi, M. A., Khalilzadeh, M. A., & Joharinia, S. (2014). Continuous and cuffless blood pressure monitoring based on ECG and SpO2 signals by using Microsoft Visual C Sharp. Journal of Biomedical Physics & Engineering, 4(1), 27–32.Google Scholar
  52. 52.
    Ding, X.-R., Zhang, Y.-T., Liu, J., Dai, W.-X., & Tsang, H. K. (2016). Continuous cuffless blood pressure estimation using pulse transit time and photoplethysmogram intensity ratio. IEEE Transactions on Biomedical Engineering BME, 63(5), 964–972.CrossRefGoogle Scholar
  53. 53.
    Hennigand, A., & Patzak, A. (2013). Continuous blood pressure measurement using pulse transit time. Somnologie, 17, 104–110.CrossRefGoogle Scholar
  54. 54.
    Kim, J. S., Kim, K. K., Baek, H. J., & Park, K. S. (2008). Effect of confounding factors on blood pressure estimation using pulse arrival time. Physiological Measurement, 29, 615–624.CrossRefGoogle Scholar
  55. 55.
    Chen, Y., Wen, C., Tao, G., Bi, M., Li, G., et al. (2009). Continuous and noninvasive blood pressure measurement: A novel modeling methodology of the relationship between blood pressure and pulse wave velocity. Annals of Biomedical Engineering, 37(11), 2222–2233.CrossRefGoogle Scholar
  56. 56.
    Forouzanfar, M., Ahmad, S., Batkin, I., Dajani, H. R., Groza, V. Z., & Bolic, M. (2013). Coefficient-free blood pressure estimation based on pulse transit time-cuff pressure dependence. IEEE Transactions on Biomedical Engineering BME, 60(7), 1814–1824.CrossRefGoogle Scholar
  57. 57.
    McCarthy, B. M., Vaughan, C. J., O'Flynn, B., Mathewson, A., & Mathúna, C. O. (2013). An examination of calibration intervals required for accurately tracking blood pressure using pulse transit time algorithms. Journal of Human Hypertension, 27, 744–750.CrossRefGoogle Scholar
  58. 58.
    Thomas, S., Nathan, V., Zong, C., Soundarapandian, K., Shi, X., & Jafari, R. (2016). BioWatch: A noninvasive wrist-based blood pressure monitor that incorporates training techniques for posture and subject variability. IEEE Journal of Biomedical and Health Informatics, 20(5), 1291–1300.CrossRefGoogle Scholar
  59. 59.
    Chandrasekaran, V., Dantu, R., Jonnada, S., Thiyagaraja, S., & Pathapati Subbu, K. (2013). Cuffless differential blood pressure estimation using smart phones. IEEE Transactions on Biomedical Engineering, 60(4), 1080–1089.CrossRefGoogle Scholar
  60. 60.
    Schoot, T. S., Weenk, M., van de Belt, T. H., JLPG, E. L., van Goor, H., & JH, B. S. (2016). A new cuffless device for measuring blood pressure: A real­life validation study. Journal of Medical Internet Research, 18(5), e85.CrossRefGoogle Scholar
  61. 61.
    Futatsuyama, K., Mitsumoto, N., Kawachi, T., & Nakagawa, T. (2011). Noise robust optical sensor for driver’s vital signs, SAE Technical Paper, 2011-01-1024.Google Scholar
  62. 62.
    Tang, Z., Tamura, T., Sekine, M., Huang, A., Chen, W., Yoshid, M., Sakatani, K., Kobayashi, H., & Kanaya, S. A. (2016). Chair-based unobtrusive cuffless blood pressure monitoring system based on pulse arrival time. IEEE Journal of Biomedical Health Informatics.  https://doi.org/10.1109/JBHI.2016.2614962.
  63. 63.
    Liu, Q., Yan, B. P., Yu, C.-M., Zhang, Y.-T., & Poon, C. C. Y. (2014). Attenuation of systolic blood pressure and pulse transit time hysteresis during exercise and recovery in cardiovascular patients. IEEE Transactions on Biomedical Engineering, 61(2), 346–352.CrossRefGoogle Scholar
  64. 64.
    Zheng, Y., Poon, C. C. Y., Yan, B. P., & Lau, J. Y. W. (2016). Pulse arrival time based cuff-less and 24-H wearable blood pressure monitoring and its diagnostic value in hypertension. Journal of Medical System, 40, 195.CrossRefGoogle Scholar
  65. 65.
    Mukkamala, R., Hahn, J. O., Inan, O. T., Mestha, L. K., Kim, C. S., Töreyin, H., & Kyal, S. (2015). Toward ubiquitous blood pressure monitoring via pulse transit time: Theory and practice. IEEE Transactions on Biomedical Engineering, 62(8), 1879–1901.CrossRefGoogle Scholar
  66. 66.
    Nabeel, P. M., Joseph, J., Awasthi, V., & Sivaprakasam, M. (2016). Single source photoplethysmograph transducer for local pulse wave velocity measurement. Proceedings of the IEEE 38th annual international conference on Engineering in Medicine and Biology Society (EMBC) 2016, pp. 4256–4259.Google Scholar
  67. 67.
    Hsu, Y.-P., & Young, D. J. (2014). Skin-coupled personal wearable ambulatory pulse wave velocity monitoring system using microelectromechanical sensors. IEEE Sensors Journal, 14(10), 3490–3497.CrossRefGoogle Scholar
  68. 68.
    Wu, Chih. -C., & Chao, P. C.-P. (2016). Validation of the Freescan pulse transit time-based blood pressure monitor Journal of Hypertension, Poster Session 05–04.Google Scholar
  69. 69.
    Boubouchairopoulou, N., & Stergiou, G. S. (2017). A novel cuffless device for self-measurement of bloodpressure: Concept, performance and clinical validation. Journal of Human Hypertension, 31, 479–482.  https://doi.org/10.1038/jhh.2016.101.
  70. 70.
    Verberk, W. J., Cheng, H. M., Huang, L. C., Lin, C. M., Teng, Y. P., & Chen, C. H. (2016). Practical suitability of a stand-alone oscillometric Central Blood Pressure Monitor: A review of the Microlife WatchBP Office Central. Pulse (Basel), 3(3–4), 205–221.CrossRefGoogle Scholar
  71. 71.
    Smith, L. A., Dawes, P. J., & Galland, B. C. (in press). The use of pulse transit time in pediatric sleep studies: A systematic review. Sleep Medicine Reviews.  https://doi.org/10.1016/j.smrv.2016.11.006.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Future Robotics OrganizationWaseda UniversityShinjukuJapan

Personalised recommendations