Skip to main content

Automatic Dietary Monitoring Using Wearable Accessories

  • Chapter
  • First Online:
Seamless Healthcare Monitoring

Abstract

This chapter provides an introduction to the field of automatic dietary monitoring (ADM) that intends to derive diet-related behaviour information from unobtrusive sensors and data analysis algorithms. A conceptual gap found in most literature reviews on the relation of physiology and dietary activities is filled. A consistent knowledge-based physiological model for dietary activities is presented. A biomedical approach is adopted to retrieve phenomenological insights of the food preparation, intake, and digestion processes. A taxonomy of dietary activities and a literature review of wearable sensing approaches and dietary dimensions across all dietary activities are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    BMI is an index of weight vs. height, commonly used to classify overweight and obese adults. BMI is defined as body weight in kilogrammes divided by the square of body height in metres, i.e. having a unit.

  2. 2.

    Notice that our mouth intake taxonomy is based on qualitative phenomenological observations. The intention is to discretise the highly complex mouth behaviour in order to suggest potential targets for monitoring procedures.

  3. 3.

    Discretisation implies that only dominant features are considered. As an example consider air inhalation in Table 13.2. We indicate air inhalation as a process that characterises the mouth intake called suck. Physiologically, air inhalation is performed in any type of mouth intake with different degrees of intensity. Nevertheless, we consider air inhalation a dominant component of the suck mouth intake and neglectable for the other types of mouth intake.

References

  1. Wing, R. R., & Phelan, S. (2005). Long-term weight loss maintenance. The American Journal of Clinical Nutrition, 82(1 Suppl), 222S–225S. ISSN 0002-9165.

    Google Scholar 

  2. Burke, B. S. (1947). The dietary history as a tool in research. Journal of the American Dietetic Association, 23, 1041–1046.

    Google Scholar 

  3. Bellisle, F. (2003). Why should we study human food intake behaviour? Nutrition, Metabolism, and Cardiovascular Diseases, 13(4), 189–193. https://doi.org/10.1016/ S0939-4753(03)80010-8.

    Article  Google Scholar 

  4. Witschi, J. C. (1990). Short-term dietary recall and recording methods. In W. Willett (Ed.), Nutritional epidemiology (Vol. 4, pp. 52–68). New York: Oxford University Press.

    Google Scholar 

  5. Lieffers, J. R. L., Vance, V. A., & Hanning, R. M. (2014). Use of mobile device applications in Canadian dietetic practice. Canadian Journal of Dietetic Practice and Research, 75(1), 41–47. https://doi.org/10.3148/75.1.2014.41.

    Article  Google Scholar 

  6. Amft, O., & Troster, G. (2006, November). Methods for detection and classification of normal swallowing from muscle activation and sound. PHC 2006: Proceedings of the first international conference on pervasive computing technologies for healthcare, ICST, pp. 1–10. doi: https://doi.org/10.1109/PCTHEALTH.2006.361624.

  7. Amft, O., Junker, H., & Troster, G. (2005). Detection of eating and drinking arm gestures using inertial body-worn sensors. In B. Rhodes & K. Mase (Eds.), ISWC 2005: IEEE Proceedings of the ninth international symposium on wearable computers (pp. 160–163). Los Alamitos: IEEE Press. https://doi.org/10.1109/ISWC.2005.17.

    Google Scholar 

  8. Amft, O., St¨ager, M., Lukowicz, P., & Troster, G. (2005). Analysis of chewing sounds for dietary monitoring. In UbiComp 2005: Proceedings of the 7th international conference on ubiquitous computing., volume 3660 of LNCS (pp. 56–72). Berlin/Heidelberg: Springer. https://doi.org/10.1007/11551201 4.

    Chapter  Google Scholar 

  9. Amft, O., & Troster, G. (2009). On-body sensing solutions for automatic dietary monitoring. IEEE Pervasive Computing, 8(2), 62–70. https://doi.org/10.1109/MPRV.2009.32.

    Article  Google Scholar 

  10. Amft, O. (2011). Ambient, on-body, and implantable monitoring technologies to assess dietary behaviour. In V. R. Preedy, R. R. Watson, & C. R. Martin (Eds.), International handbook of behavior, food and nutrition (Vol. 38, pp. 3507–3526). New York: Springer. ISBN 978-0-387-92270-6.

    Chapter  Google Scholar 

  11. Fontana, J. M., & Sazonov, E. (2014). Detection and characterization of food intake by wearable sensors, Wearable sensors (pp. 591–616). Oxford: Academic Press.

    Google Scholar 

  12. Passler, S., & Fischer, W.-J. (2014). Food intake monitoring: Automated chew event detection in chewing sounds. IEEE Journal of Biomedical and Health Informatics, 18(1), 278–289.

    Article  Google Scholar 

  13. Stumbo, P. J. (2013). New technology in dietary assessment: A review of digital methods in improving food record accuracy. Proceedings of the Nutrition Society, 72(01), 70–76.

    Article  Google Scholar 

  14. Kalantarian, H., Mortazavi, B., Alshurafa, N., Sideris, C., Le, T., & Sarrafzadeh, M. (2016). A comparison of piezoelectric-based inertial sensing and audio-based detection of swallows. Obesity Medicine, 1, 6–14. ISSN 2451-8476. https://doi.org/10.1016/j.obmed.2016.01.003.

    Article  Google Scholar 

  15. Steele, R. (2015). An overview of the state of the art of automated capture of dietary intake information. Critical Reviews in Food Science and Nutrition, 55(13), 1929–1938.

    Article  Google Scholar 

  16. Hassannejad, H., Matrella, G., Ciampolini, P., De Munari, I., Mordonini, M., & Cagnoni, S. (2017). Automatic diet monitoring: A review of computer vision and wearable sensor-based methods. International Journal of Food Sciences and Nutrition, 68(6), 656–670.

    Google Scholar 

  17. Prioleau, T., Moore, E., & Ghovanloo, M. (2017). Unobtrusive and wearable systems for automatic dietary monitoring. IEEE Transactions on Biomedical Engineering, 99, 1–1. ISSN 0018-9294. https://doi.org/10.1109/TBME. 2016.2631246.

    Google Scholar 

  18. Vu, T., Lin, F., Alshurafa, N., & Xu, W. (2017). Wearable food intake monitoring technologies: A comprehensive review. Computers, 6(1), 4. https://doi.org/10.3390/computers6010004.

    Article  Google Scholar 

  19. Jones, B. (2012). Normal and abnormal swallowing: Imaging in diagnosis and therapy. New York: Springer Science & Business Media.

    Google Scholar 

  20. Dodds, W. J., Stewart, E. T., & Logemann, J. A. (1990). Physiology and radiology of the normal oral and pharyngeal phases of swallowing. American Journal of Roentgenology, 154(5), 953–963. ISSN 0361-803X. https://doi.org/10.2214/ajr.154.5.2108569.

    Article  Google Scholar 

  21. Pereira, L. J., de Wijk, R. A., Gaviao, M. B. D., & van der Bilt, A. (2006). Effects of added fluids on the perception of solid food. Physiology & Behavior, 88(4), 538–544.

    Article  Google Scholar 

  22. Der Bilt, A. V., de Liz Pocztaruk, R., & Abbink, J. H. (2010). Skull vibration during chewing of crispy food. Journal of Texture Studies, 41(6), 774–788.

    Article  Google Scholar 

  23. Fontijn-Tekamp, F. A., van der Bilt, A., Abbink, J. H., & Bosman, F. (2004). Swallowing threshold and masticatory performance in dentate adults. Physiology & Behavior, 83(3), 431–436. https://doi.org/10.1016/j.physbeh.2004.08. 026.

    Article  Google Scholar 

  24. Hiiemae, K. (2004). Mechanisms of food reduction, transport and deglutition: How the texture of food affects feeding behavior. Journal of Texture Studies, 35(2), 171–200. https://doi.org/10.1111/j.1745-4603.2004.tb00832.x.

    Article  Google Scholar 

  25. Gray-Stuart, E. M. (2016). Modelling food breakdown and Bolus formation during mastication: A thesis presented in partial fulfilment of the requirements for the degree of doctor of philosophy in bioprocess engineering at Massey University, Palmerston North, New Zealand. Thesis, Massey University.

    Google Scholar 

  26. Aguilera, J. M. (2005). Why food microstructure? Journal of Food Engineering, 67(1–2), 3–11. https://doi.org/10.1016/j.jfoodeng.2004.05.050. IV Iberoamerican Congress of Food Engineering (CIBIA IV).

    Article  Google Scholar 

  27. Amft, O., Kusserow, M., & Troster, G. (2007, March). Probabilistic parsing of dietary activity events. In S. Leonhardt, T. Falck, & P. Mahonen (Eds.), BSN 2007: Proceedings of the international workshop on wearable and implantable body sensor networks (Vol. 13, pp. 242–247). Springer. doi: https://doi.org/10.1007/978-3-540-70994-741.

  28. Kissileff, H. R., & Guss, J. L. (2001). Microstructure of eating behavior in humans. Appetite, 36(1), 70–78. https://doi.org/10.1006/appe.2000.0369.

    Article  Google Scholar 

  29. Tortora, G. J., & Derrickson, B. H. (2008). Principles of anatomy and physiology. Hoboken: Wiley. ISBN 978-0-470-08471-7. Google-Books-ID: uNwfOPPYgKAC.

    Google Scholar 

  30. Manfield, A. (2015, August). Win diabetes in 4/2 weeks. Morrisville: Lulu Press. ISBN: 978-1-326-39258-1. Google-Books-ID: WhKFCgAAQBAJ.

    Google Scholar 

  31. Block, G. (1982). A review of validations of dietary assessment methods. American Journal of Epidemiology, 115(4), 492–505.

    Google Scholar 

  32. Barbosa-Canovas, G. V., Juliano, P., & Peleg, M. (2009). Engineering properties of foods. Food Engineering, I, 39.

    Google Scholar 

  33. Winkler, E., & Turrell, G. (2010). Confidence to cook vegetables and the buying habits of Australian households. Journal of the American Dietetic Association, 110(5), S52–S61.

    Article  Google Scholar 

  34. Pham, C., & Olivier, P. (2009). Slice&Dice: recognizing food preparation activities using embedded accelerometers. Proceedings of the European conference on ambient intelligence, AmI ’09, Berlin, Heidelberg, Springer-Verlag, pp. 34–43. ISBN 978-3-642-05407-5. doi: https://doi.org/10.1007/978-3-642-05408-2 4.

  35. Plotz, T., Moynihan, P., Pham, C., & Olivier, P. (2011). Activity recognition and healthier food preparation. In L. Chen, C. D. Nugent, J. Biswas, & J. Hoey (Eds.), Activity recognition in pervasive intelligent environments. Atlantis ambient and pervasive intelligence (Vol. 4, pp. 313–329). Paris: Atlantis Press. ISBN 978-90-78677-42-0 978-94-91216-05-3. doi: https://doi.org/10.2991/978–94–91216-05-3 14.

  36. Ward, J. A., Bharatula, N., Troster, G., & Lukowicz, P. (2002). Continuous activity recognition in the kitchen using miniaturised sensor button. Technical notes.

    Google Scholar 

  37. Patterson, D. J., Fox, D., Kautz, H., & Philipose, M. (2005). Fine-grained activity recognition by aggregating abstract object usage. In B. Rhodes & K. Mase (Eds.), ISWC 2005: Proceedings of the ninth IEEE international symposium on wearable computers (pp. 44–51). Los Alamitos: IEEE Press. https://doi.org/10.1109/ISWC.2005.22.

    Google Scholar 

  38. Ye, X., Chen, G., Gao, Y., Wang, H., & Cao, Y. (2016). Assisting food journaling with automatic eating detection. Proceedings of the 2016 CHI conference extended abstracts on human factors in computing systems, CHI EA’16, New York, ACM, pp. 3255–3262. ISBN 978-1-4503-4082-3. doi: https://doi.org/10.1145/2851581.2892426.

  39. Ye, X., Chen, G., & Cao, Y. (2015). Automatic eating detection using head-mount and wrist-worn accelerometers. 2015 17th international conference on e-Health networking, application services (HealthCom.), pp. 578–581. doi: https://doi.org/10.1109/HealthCom.2015.7454568.

  40. Thomaz, E., Essa, I., & Abowd, G. D. (2015). A practical approach for recognizing eating moments with wrist-mounted inertial sensing. Proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous computing, UbiComp ’15, New York, pp. 1029–1040. ACM. ISBN 978-1-4503-3574-4. doi: https://doi.org/10.1145/2750858. 2807545.

  41. Scisco, J. L., Muth, E. R., & Hoover, A. W. (2014). Examining the utility of a bite-count-based measure of eating activity in free-living human beings. Journal of the Academy of Nutrition and Dietetics, 114(3), 464–469. ISSN 2212-2672. https://doi.org/10.1016/j.jand.2013.09.017.

    Article  Google Scholar 

  42. Dong, Y., Scisco, J., Wilson, M., Muth, E., & Hoover, A. (2014). Detecting periods of eating during free-living by tracking wrist motion. IEEE Journal of Biomedical and Health Informatics, 18(4), 1253–1260. ISSN 2168-2208. https://doi.org/10.1109/JBHI.2013.2282471.

    Article  Google Scholar 

  43. Eskandari, S. (2013). Bite detection and differentiation using templates of Wrist motion. PhD thesis, Clemson University.

    Google Scholar 

  44. Dong, Y., Hoover, A., Scisco, J., & Muth, E. (2012. ISSN 1573-3270). A new method for measuring meal intake in humans via automated wrist motion tracking. Applied Psychophysiology and Biofeedback, 37(3), 205–215. https://doi.org/10.1007/s10484-012-9194-1.

    Article  Google Scholar 

  45. Amft, O., Bannach, D., Pirkl, G., Kreil, M., & Lukowicz, P. (2010). Towards wearable sensing based assessment of fluid intake. Per-health 2010: Proceedings of the first IEEE PerCom workshop on pervasive healthcare, IEEE, pp. 298–303. doi: https://doi.org/10.1109/PERCOMW.2010.5470653.

  46. Amft, O., & Troster, G. (2008). Recognition of dietary activity events using on-body sensors. Artificial Intelligence in Medicine, 42(2), 121–136. ISSN 0933-3657. https://doi.org/10.1016/j.artmed.2007.11.007.

    Article  Google Scholar 

  47. Junker, H., Amft, O., Lukowicz, P., & Troster, G. (2008). Gesture spotting with body-worn inertial sensors to detect user activities. Pattern Recognition, 41(6), 2010–2024. https://doi.org/10.1016/j.patcog.2007.11.016.

    Article  MATH  Google Scholar 

  48. Kadomura, A., Li, C-Y., Chen, Y-C., Chu, H-H., Tsukada K., & Siio I. (2013). Sensing fork and persuasive game for improving eating behavior. Proceeding UbiComp ’13 adjunct proceedings of the 2013 ACM conference on pervasive and ubiquitous computing adjunct publication, ACM Press, pp. 71–74. ISBN 978-1-4503-2215-7. doi: https://doi.org/10.1145/1114 2494091.2494112.

  49. Huo, X., Wang, J., & Ghovanloo, M. (2008). A magneto-inductive sensor based wireless tongue-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(5), 497–504. ISSN 1534-4320. https://doi.org/10.1109/TNSRE.2008.2003375.

    Article  Google Scholar 

  50. Wang, Y-X., Lo, L-Y., & Hu, M-C. (2014). Eat as much as you can: A Kinect-based facial rehabilitation game based on mouth and tongue movements. Proceedings of the 22nd ACM international conference on multimedia, ACM, pp. 743–744.

    Google Scholar 

  51. Tamilia, E., Formica, D., Scaini, A., & Taffoni, F. (2016). An automated system for the analysis of newborns’ oral-motor behavior. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(12), 1294–1303.

    Article  Google Scholar 

  52. Huang, Q., Wang, W., & Zhang, Q. (2017). Your glasses know your diet: Dietary monitoring using electromyography sensors. IEEE Internet of Things Journal, 99, 1–1. ISSN 2327-4662. https://doi.org/10.1109/JIOT.2017. 2656151.

    Google Scholar 

  53. Zhang, R., & Amft, O. (2016). Bite glasses: Measuring chewing using EMG and bone vibration in smart eyeglasses. Proceedings of the 2016 ACM international symposium on wearable computers, ISWC ’16, New York, ACM, pp. 50–52. ISBN 978–1–4503-4460-9. doi: https://doi.org/10.1145/2971763.2971799.

  54. Zhang, R., & Amft, O. (2016). Regular-look eyeglasses can monitor chewing. Proceedings of the 2016 ACM international symposium on wearable computers, ACM, pp. 389–392. doi: https://doi.org/10.1145/2968219.2971374.

  55. Zhang, R., Bernhart, S., & Amft, O. (2016). Diet eyeglasses: Recognising food chewing using EMG and smart eyeglasses. Proceedings of the international conference on wearable and implantable body sensor networks (BSN’ 16), IEEE, pp. 7–12 doi: https://doi.org/10.1109/BSN.2016.7516224.

  56. Farooq, M., & Sazonov, E. (2016). A novel wearable device for food intake and physical activity recognition. Sensors, 16(7), 1067. ISSN 1424-8220. https://doi.org/10.3390/s16071067.

    Article  Google Scholar 

  57. Chung, J., Chung, J., Wonjun, O., Yoo, Y., Lee, W. G., & Bang, H. (2017). A glasses-type wearable device for monitoring the patterns of food intake and facial activity. Scientific Reports, 7, 41690. ISSN 2045-2322. https://doi.org/10.1038/srep41690.

    Article  Google Scholar 

  58. Amft, O. (2010). A wearable earpad sensor for chewing monitoring. Sensors 2010: Proceedings of IEEE sensors conference, IEEE, pp. 222–227. doi: https://doi.org/10.1109/ICSENS.2010.5690449.

  59. Amft, O., Kusserow, M., & Troster, G. (2009). Bite weight prediction from acoustic recognition of chewing. IEEE Transactions on Biomedical Engineering, 56(6), 1663–1672. https://doi.org/10.1109/TBME.2009. 2015873.

    Article  Google Scholar 

  60. Gao, Y., Zhang, N., Wang, H., Ding, X., Ye X.,Chen, G., & Cao, Y. (2016). iHear food: Eating detection using commodity bluetooth headsets. Connected health: Applications, systems and engineering technologies (CHASE), 2016 I.E. first international conference on, IEEE, pp. 163–172.

    Google Scholar 

  61. Liu, J., Johns, E., Atallah, L., Pettitt, C., Lo, B., Frost, G., & Yang, G. Z. (2012, May). An intelligent food-intake monitoring system using wearable sensors. 2012 ninth international conference on wearable and implantable body sensor networks (BSN), pp. 154–160. doi: https://doi.org/10.1109/BSN. 2012.11.

    Google Scholar 

  62. Mirtchouk, M., Merck, C., & Kleinberg, S. (2016). Automated estimation of food type and amount consumed from body-worn audio and motion sensors. Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing, UbiComp ’16, New York, ACM, pp. 451–462. ISBN 978-1-4503-4461-6. doi: https://doi.org/10.1145/2971648.2971677.

  63. Nishimura, J., & Kuroda, T. (2008). Eating habits monitoring using wireless wearable in-ear microphone. ISWPC 2008: Proceedings of the 3rd international symposium on wireless pervasive computing, IEEE, pp. 130–132. doi: https://doi.org/10.1109/ISWPC.2008.4556181.

  64. Passler, S., Wolff, M., & Fischer, W.-J. (2012). Food intake monitoring: An acoustical approach to automated food intake activity detection and classification of consumed food. Physiological Measurement, 33(6), 1073. https://doi.org/10.1088/0967-3334/33/6/1073.

    Article  Google Scholar 

  65. Shuzo, M., Komori, S., Takashima, T., Lopez, G., Tatsuta, S., Yanagimoto, S., Warisawa, S., Delaunay, J.-J., & Yamada, I. (2009). Wearable eating habit sensing using sound information. Proceedings of the 2009 conference on micromechatronics for information and precision equipment, pp. 221–222.

    Google Scholar 

  66. Bedri, A., Verlekar, A., Thomaz, E., Avva, V., & Starner, T. (2015). Detecting mastication: A wearable approach. Proceedings of the 2015 ACM on international conference on multimodal interaction, ACM, pp. 247–250.

    Google Scholar 

  67. Li, C-Y., Chen, Y-C., Chen, W-J., Huang P., & Chu, H-H. (2013). Sensor-embedded teeth for oral activity recognition. Proceedings of the 2013 international symposium on wearable computers, ISWC ’13, New York, ACM, pp. 41–44. ISBN 978-1-4503-2127-3. doi: https://doi.org/10.1145/2493988.2494352.

  68. Stellar, E., & Shrager, E. E. (1985). Chews and swallows and the microstructure of eating. The American Journal of Clinical Nutrition, 42(5 Suppl), 973–982. ISSN 0002-9165.

    Google Scholar 

  69. Bi, Y., Lv, M., Song, C., Xu, W., Guan, N., & Yi, W. (2016). AutoDietary: A wearable acoustic sensor system for food intake recognition in daily life. IEEE Sensors Journal, 16(3), 806–816. ISSN 1530-437X. https://doi.org/10.1109/JSEN.2015.2469095.

    Article  Google Scholar 

  70. Olubanjo, T., & Ghovanloo, M. (2014). Tracheal activity recognition based on acoustic signals. Engineering in medicine and biology society (EMBC), 2014 36th annual international conference of the IEEE, IEEE, pp. 1436–1439.

    Google Scholar 

  71. Peyron, A., Lassauzay, C., & Woda, A. (2002). Effects of increased hardness on jaw movement and muscle activity during chewing of visco-elastic model foods. Experimental Brain Research, 142(1), 41–51. https://doi.org/10.1007/s00221-001-0916-5.

    Article  Google Scholar 

  72. Wahl, F., Zhang, R., Freund, M., & Amft, O. (2017). Personalizing 3D-printed smart eyeglasses to augment daily life. IEEE Computer, 50(2), 26–35. https://doi.org/10.1109/MC.2017.44.

    Article  Google Scholar 

  73. Zhang, R., & Amft, O. (2017). Monitoring chewing and eating in free-living using smart eyeglasses. IEEE Journal of Biomedical and Health Informatics, 99, 1–1. ISSN 2168–2194. doi: https://doi.org/10.1109/JBHI.2017. 2698523.

  74. Ono, T., Hori, K., & Nokubi, T. (2004). Pattern of tongue pressure on hard palate during swallowing. Dysphagia, 19(4), 259–264.

    Article  Google Scholar 

  75. Hori, K., Ono, T., Tamine, K., Kondo, J., Hamanaka, S., Maeda, Y., Dong, J., & Hatsuda, M. (2009). Newly developed sensor sheet for measuring tongue pressure during swallowing. Journal of Prosthodontic Research, 53(1), 28–32.

    Article  Google Scholar 

  76. Farooq, M., Fontana, J. M., & Sazonov, E. (2014). A novel approach for food intake detection using electroglottography. Physiological Measurement, 35(5), 739–751. https://doi.org/10.1088/0967-3334/35/5/739.

    Article  Google Scholar 

  77. Cheng, J., Zhou,B., Kunze, K., Rheinlander, C. C., Wille, S., Wehn, N., Weppner, J., & Lukowicz, P. (2013). Activity recognition and nutrition monitoring in every day situations with a textile capacitive neckband. Proceedings of the 2013 ACM conference on pervasive and ubiquitous computing adjunct publication, UbiComp ’13 Adjunct, New York, ACM, pp. 155–158. ISBN 978-1-4503-2215-7. doi: https://doi.org/10.1145/2494091.2494143.

  78. Kalantarian, H., Alshurafa, N., Le, T., & Sarrafzadeh, M. (2015). Monitoring eating habits using a piezoelectric sensor-based necklace. Computers in Biology and Medicine, 58, 46–55. https://doi.org/10.1016/j.compbiomed.2015.01.005.

    Article  Google Scholar 

  79. Rahman, T., Adams, A. T., Zhang, M., Cherry, E., Zhou, B., Peng, H., & Choudhury, T. (2014). BodyBeat: A mobile system for sensing non-speech body sounds. MobiSys 2014: Proceedings of the 12th annual international conference on mobile systems, applications, and services, MobiSys ’14, Bretton Woods, New Hampshire, ACM, pp. 2–13. ISBN 978–1–4503-2793-0. doi: https://doi.org/10.1145/2594368.2594386.

  80. Yatani, K., & Truong, K. N. (2012). BodyScope: A wearable acoustic sensor for activity recognition. Ubicomp 2012: Proceedings of the 2012 ACM conference on Ubiquitous Computing, UbiComp ’12, Pittsburgh, Pennsylvania, ACM, p. 341–350. ISBN 978-1-4503-1224-0. doi: https://doi.org/10.1145/2370216.2370269.

  81. Sazonov, E., Schuckers, S., Lopez-Meyer, P., Makeyev, O., Sazonova, N., Melanson, E. L., & Neuman, M. (2008). Non-invasive monitoring of chewing and swallowing for objective quantification of ingestive behavior. Physiological Measurement, 29(5), 525–541. https://doi.org/10.1088/0967-3334/29/5/001.

    Article  Google Scholar 

  82. Dong, B., & Biswas, S. (2014). Wearable sensing for liquid intake monitoring via apnea detection in breathing signals. Biomedical Engineering Letters, 4(4), 378–387. ISSN 2093-9868, 2093-985X. https://doi.org/10.1007/ s13534-014-0149-8.

    Article  Google Scholar 

  83. Moriniere, S., Boiron, M., Alison, D., Makris, P., & Beutter, P. (2008). Origin of the sound components during pharyngeal swallowing in normal subjects. Dysphagia, 23(3), 267–273. ISSN 0179-051X, 1432-0460. https://doi.org/10.1007/s00455-007-9134-z.

    Article  Google Scholar 

  84. Zhang, R., Freund, M., Amft, O., Cheng, J., Zhou, B., Lukowicz, P., Fernando, S., & Chabrecek, P. (2016). A generic sensor fabric for multi-modal swallowing sensing in regular upper-body shirts. Proceedings of the 2016 ACM international symposium on wearable computers, ISWC ’16, New York, USA, ACM, pp. 46–47. ISBN 978-1-4503-4460-9. doi: https://doi.org/10.1145/2971763.2971785.

  85. Costa, M. M. B., & de Oliveira Lemme, E. M. (2010). Coordination of respiration and swallowing: Functional pattern and relevance of vocal folds closure. Arquivos de Gastroenterologia, 47(1), 42–48. ISSN 0004-2803. https://doi.org/10.1590/S0004-28032010000100008.

    Article  Google Scholar 

  86. Tomomasa, T., Morikawa, A., Sandler, R. H., Mansy, H. A., Koneko, H., Masahiko, T., Hyman, P. E., & Itoh, Z. (1999). Gastrointestinal sounds and migrating motor complex in fasted humans. The American Journal of Gastroenterology, 94(2), 374–381.

    Article  Google Scholar 

  87. Yamaguchi, K., Yamaguchi, T., Odaka, T., & Saisho, H. (2006). Evaluation of gastrointestinal motility by computerized analysis of abdominal auscultation findings. Journal of Gastroenterology and Hepatology, 21(3), 510–514. https://doi.org/10.1111/j.1440-1746.2005.03997.x.

    Article  Google Scholar 

  88. Kirilina, S. I., Kusainov, R. K., Makukha, V. K., Mubarakshin, R. A., Poltaratskaya, E. S., & Sirota, G. G. (2016). The time-response characteristics of gastrointestinal motility. Actual problems of electronics instrument engineering (APEIE), 2016 13th international scientific-technical conference on, IEEE, Vol. 1, pp. 434–435.

    Google Scholar 

  89. Sazonova, N. A., Browning, R., & Sazonov, E. S. (2011). Prediction of bodyweight and energy expenditure using point pressure and foot acceleration measurements. The Open Biomedical Engineering Journal, 5, 110.

    Article  Google Scholar 

  90. Lu, L., Ji, R., & Liu, M. (2014). Design of real-time body weight monitor systems based on smart phones. Mechatronics and control (ICMC), 2014 international conference on, IEEE, pp. 1392–1396.

    Google Scholar 

  91. Hellstrom, P., Folke, M., & Ekstrom, M. (2015). Wearable weight estimation system. Procedia Computer Science, 64, 146–152.

    Article  Google Scholar 

  92. Parker, D. R., Carlisle, K., Cowan, F. J., Corrall, R. J., & Read, A. E. (1995). Post-prandial mesenteric blood flow in humans: Relationship to endogenous gastrointestinal hormone secretion and energy content of food. European Journal of Gastroenterology & Hepatology, 7(5), 435–440.

    Google Scholar 

  93. Asada, H. H., Shaltis, P., Reisner, A., Rhee, S., & Hutchinson, R. C. (2003). Mobile monitoring with wearable photoplethysmographic biosensors. IEEE Engineering in Medicine and Biology Magazine, 22(3), 28–40.

    Article  Google Scholar 

  94. Westerterp-Plantenga, M. S., Wouters, L., & ten Hoor, F. (1990). Deceleration in cumulative food intake curves, changes in body temperature and diet-induced thermogenesis. Physiology & Behavior, 48(6), 831–836. https://doi.org/10.1016/0031-9384(90)90235-V.

    Article  Google Scholar 

  95. Locher, I., Kirstein, T., & Troster, G. (2005). Temperature profile estimation with smart textiles. Proceedings of the international conference on intelligent textiles, smart clothing, well-being, and design, Tampere, Citeseer, pp. 19–20.

    Google Scholar 

  96. Dassau, E., Herrero, P., Zisser, H., Buckingham, B. A., Jovanovic, L., Man, C. D., Cobelli, C., Vehi, J., & Doyle, F. J. (2008). Implications of meal library & meal detection to glycemic control of type 1 diabetes mellitus through MPC control. IFAC Proceedings, 41(2), 4228–4233. ISSN 1474-6670. https://doi.org/10.3182/20080706-5-KR-1001.00711.

    Article  Google Scholar 

  97. Xie, J., & Wang, Q. (2015). Meal detection and meal size estimation for type 1 diabetes treatment: A variable state dimension approach. ASME 2015 dynamic systems and control conference, p. V001T15A003. doi: https://doi.org/10.1115/DSCC2015-9905.

  98. Turksoy, K., Samadi, S., Feng, J., Littlejohn, E., Quinn, L., & Cinar, A. (2016). Meal detection in patients with type 1 diabetes: A new module for the multivariable adaptive artificial pancreas control system. IEEE Journal of Biomedical and Health Informatics, 20(1), 47–54. ISSN 2168-2194. https://doi.org/10.1109/JBHI.2015.2446413.

    Article  Google Scholar 

  99. Kelly, P., Marshall, S. J., Badland, H., Kerr, J., Oliver, M., Doherty, A. R., & Foster, C. (2013). An ethical framework for automated, wearable cameras in health behavior research. American Journal of Preventive Medicine, 44(3), 314–319.

    Article  Google Scholar 

  100. Pettitt, C., Liu, J., Kwasnicki, R. M., Yang, G.-Z., Preston, T., & Frost, G. (2016). A pilot study to determine whether using a lightweight, wearable micro-camera improves dietary assessment accuracy and offers information on macronutrients and eating rate. The British Journal of Nutrition, 115(1), 160–167. ISSN 1475-2662. https://doi.org/10.1017/S0007114515004262.

    Article  Google Scholar 

  101. Gemming, L., Rush, E., Maddison, R., Doherty, A., Gant, N., Utter, J., & Mhurchu, C. N. (2015). Wearable cameras can reduce dietary under-reporting: Doubly labelled water validation of a camera-assisted 24 h recall. The British Journal of Nutrition, 113(2), 284–291. ISSN 1475-2662. https://doi.org/10.1017/S0007114514003602.

    Article  Google Scholar 

  102. Sen, S., Subbaraju, V., Misra, A., Balan, R. K., & Lee, Y. (2015, March). The case for smartwatch-based diet monitoring. 2015 I.E. international conference on pervasive computing and communication workshops (PerCom workshops), pp. 585–590. doi: https://doi.org/10.1109/PERCOMW.2015.7134103.

  103. Jia, W., Chen, H.-C., Yue, Y., Li, Z., Fernstrom, J., Bai, Y., Li, C., & Sun, M. (2014). Accuracy of food portion size estimation from digital pictures acquired by a chest-worn camera. Public Health Nutrition, 17(8), 1671–1681. ISSN 1475-2727. https://doi.org/10.1017/S1368980013003236.

    Article  Google Scholar 

  104. Chen, H.-C., Jia, W., Sun, X., Li, Z., Li, Y., Fernstrom, J. D., Burke, L. E., Baranowski, T., & Sun, M. (2015). Saliency-aware food image segmentation for personal dietary assessment using a wearable computer. Measurement Science & Technology, 26(2). ISSN 0957-0233). https://doi.org/10.1088/0957-0233/26/2/025702.

  105. Anthimopoulos, M., Dehais, J., Shevchik, S., Ransford, B. H., Duke, D., Diem, P., & Mougiakakou, S. (2015). Computer vision-based carbohydrate estimation for type 1 patients with diabetes using smartphones. Journal of Diabetes Science and Technology, 9(3), 507–515. https://doi.org/10.1177/1932296815580159.

    Article  Google Scholar 

Download references

Acknowledgement

This work has been partially funded by the European Union H2020 MSCA ITN ACROSSING project (GA no. 616757).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Schiboni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schiboni, G., Amft, O. (2018). Automatic Dietary Monitoring Using Wearable Accessories. In: Tamura, T., Chen, W. (eds) Seamless Healthcare Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-319-69362-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69362-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69361-3

  • Online ISBN: 978-3-319-69362-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics