Body Temperature, Heat Flow, and Evaporation

Chapter

Abstract

Wearable thermometers are popular devices for measuring body temperature during fever, as well as basal temperature in women. They are easy to handle, inexpensive, and accurate and provide continuous recordings. Most wearable thermometers connect to a smartphone or tablet to display data. Many forms of wearable thermometer are available, such as touch, patch, and invisible (radiometry) types. In this review, we describe and discuss currently available wearable thermometers.

Keywords

Body temperature Wearable thermometer Tattoo thermometer Deep body thermometer Continuous monitoring Digital thermometer Home health care Heat flow Energy expenditure Humidity 

References

  1. 1.
    van Someren, E. J., & Eus, J. W. (2006). Mechanisms and functions of coupling between sleep and temperature rhythms. Progress in Brain Research, 153, 309–324.CrossRefGoogle Scholar
  2. 2.
    Scully, C. G., Karaboué, A., Liu, W.-M., et al. (2011). Skin surface temperature rhythms as potential circadian biomarkers for personalized chronotherapeutics in cancer patients. Interface Focus, 1, 48–60.Google Scholar
  3. 3.
    Puhakka, K., Anttonen, H., Niskanen, J., & Ryhänen, P. (1994). Calculation of mean skin temperature and changes in body heat content during paediatric anaesthesia. British Journal of Anaesthesia, 72(5), 548–553.CrossRefGoogle Scholar
  4. 4.
    Shibasaki, M., Kondo, N., Toninaga, H., Aoki, K., Hasegawa, E., Idota, Y., & Moriwaki, T. (1998). Continuous measurement of tympanic temperature with a new infrared method using an optical fiber. Journal of Applied Physiology, 85(3), 921–926.Google Scholar
  5. 5.
    van Vliet, M., Donnelly, J. P., Potting, C. M. J., & Blijleven, N. M. A. (2010). Continuous non-invasive monitoring of the skin temperature of HSCT recipients. Support Care Cancer, 18, 37–42.CrossRefGoogle Scholar
  6. 6.
    Krause, A., Smailagic, A., & Siewiorek, D. P. (2006). Context-aware mobile computing: Learning context-dependent personal preferences from a wearable sensor array. IEEE Transactions on Mobile Computing, 5(2), 113–127.CrossRefGoogle Scholar
  7. 7.
    Windmiller, J. R., & Wang, J. (2013). Wearable electrochemical sensors and biosensors: A review. Electroanalysis, 2581, 29–46.CrossRefGoogle Scholar
  8. 8.
    Kakria, P., Tripathi, N. K., & Kitipawang, P. (2015). A real-time health monitoring system for remote cardiac patients using smartphone and wearable sensors. International Journal of Telemedicine and Applications, 2015.  https://doi.org/10.1155/2015/373474.
  9. 9.
  10. 10.
    Selvaraj, N. (2014). Long-term remote monitoring of vital signs using a wireless patch sensor. In Proceedings of 2014 IEEE Healthcare Innovation Conference (HIC), pp. 83–86.Google Scholar
  11. 11.
    Tempdrop. http://tempdrop.xyz/?variant=767520619. Accessed 19 Feb 2016.
  12. 12.
    Ran’s Night Shop. http://www.anet21.co.jp/ransnight/index.html. Accessed 19 Feb 2016.
  13. 13.
    Chen, W., Kitazawa, M., & Togawa, T. (2009). Estimation of the biphasic property in a female’s menstrual cycle from cutaneous temperature measured during sleep. Annals of Biomedical Engineering, 37(9), 1827–1838.CrossRefGoogle Scholar
  14. 14.
    iFever. www.vipose.com/index_en.jsp. Accessed 19 Feb 2016.
  15. 15.
    iSense: Smartphone baby temperature sensor and alarm. https://www.indiegogo.com/projects/isense-smartphone-body-temperature-sensor-and-alarm#/. Accessed 19 Feb 2016.
  16. 16.
    YONO. The wearable basal thermometer. https://www.yonolabs.com/product/yono/. Accessed 20 Feb 2016.
  17. 17.
    Pacifier Pacif-I. http://pacif-i.io/. Accessed 19 Feb 2016.
  18. 18.
  19. 19.
    Smith, A. D. H., Crabtree, D. R., Bilzon, J. L. J., & Walsh, N. P. (2010). The validity of wireless iButtons® and thermistors for human skin temperature measurement. Physiological Measurement, 31, 95–111.CrossRefGoogle Scholar
  20. 20.
    Zornoza-Moreno, M., Fuentes-Hernández, S., Sánchez-Solis, M., Rol, M. Á., Larqué, E., & Madrid, A. J. A. (2011). Assessment of circadian rhythms of both skin temperature and motor activity in infants during the first 6 months of life. Chronobiology International, 28(4), 330–337.CrossRefGoogle Scholar
  21. 21.
    Fox, R., & Solman, A. (1971). A new technique for monitoring the deep body temperature in man from the intact skin surface. The Journal of Physiology, 212(2), 8–10.Google Scholar
  22. 22.
    Nemoto, T., & Togawa, T. (1988). Improved probe for a deep body thermometer. Medical & Biological Engineering & Computing, 26, 456–459.CrossRefGoogle Scholar
  23. 23.
    Yamakage, M. A., & Namiki, A. (2003). Deep temperature monitoring using a zero-heat-flow method. Journal of Anesthesia, 17(2), 108–115.CrossRefGoogle Scholar
  24. 24.
    Kitamura, K.-I. X., Zhu, X., Chen, W., & Nemoto, T. (2010). Development of a new method for the noninvasive measurement of deep body temperature without a heater. Medical Engineering & Physics, 32(1), 1–6.CrossRefGoogle Scholar
  25. 25.
    Huang, M., Tamura, T., Chen, W., & Kanaya, S. (2015). Evaluation of structural and thermophysical effects on the measurement accuracy of deep body thermometers based on dual-heat-flux method. Journal of Thermal Biology, 47, 26–31.CrossRefGoogle Scholar
  26. 26.
    Huang, M., Tamura, T., Tang, Z., Chen, W., & Kanaya, S. (2016). Structural optimization of a wearable deep body thermometer: From theoretical simulation to experimental verification. Journal of Sensors.  https://doi.org/10.1155/2016/4828093.
  27. 27.
    Huang, M., Tamura, T., Chen, W., Ono, N., Sato, T., & Kanaya, S. (2015). Evaluation of a noninvasive deep body thermometer in measurement of specific positions. Conference Proceedings IEEE Engineering Medicine Biology Society, 2395–2398.Google Scholar
  28. 28.
    Huang, M., Tamura, T., Tang, Z., Chen, W., & Kanaya, S. (2016). A wearable thermometry for core body temperature measurement. IEEE Journal of Biomedical and Health Informatics, 21(3), 708–714.CrossRefGoogle Scholar
  29. 29.
    Haar, R. G., Duun, S., Thomsen, E. V., Hoppe, K., & Branebjerg, J. (2008). A wearable “electronic patch” for wireless continuous monitoring of chronically deceased patients. Proceedings of the 5th internal workshop on Wearable and Implantable Sensor Networks, pp. 66–70.Google Scholar
  30. 30.
    Yan, L., Yoo, J., Kim, B., & Yoo, H.-J. (2010). A 0.5-μVrms 12-μW wirelessly powered patch-type healthcare sensor for wearable body sensor network. IEEE Journal of Solid-State Circuits 45(11), 2356–2365.Google Scholar
  31. 31.
    FiberFrida. http://fridababy.com/product/feverfrida/. Accessed 23 Feb 2016.
  32. 32.
    Fiber smart patch thermometer. http://feversmart.com/. Accessed 23 Feb 2016.
  33. 33.
    STEMP smart temperature patch. http://www.pincf.com/indiegogo/stemp-smart-temperature-patch/. Accessed 23 Feb 2016.
  34. 34.
    Kim, D. H., Lu, N., Ma, R., Kim, Y. S., Kim, R. H., Wang, S., Wu, J., Won, S. M., Tao, H., Islam, A., Yu, K. J., Kim, T., Chowdhury, R., Ying, M., Xu, L., Li, M., Chun, H. J., Keum, H., McCormick, M., Liu, P., Zhang, Y. W., Omenetto, F. G., Huang, Y., Coleman, T., & Rogers, J. A. (2011). Epidermal electronics. Science, 333, 838–843.CrossRefGoogle Scholar
  35. 35.
    Webb, R. C., Bonifas, A. P., Behnnaz, A., Zhang, Y., Yu, K.-J., Cheng, H., Shi, M., Bain, Z., Liu, Z., Kim, Y.-S., Yeo, W.-H., Park, J. S., Song, J., Li, Y., Huang, Y., Gorbach, A. M., John, A., & Rogers, J. A. (2013). Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nature Materials, 12, 938–944.CrossRefGoogle Scholar
  36. 36.
    Son, D., Lee, J., Qiao, S., Ghaffari, R., Kim, J., Lee, J. E., Song, C., Kim, S. J., Lee, D. J., Jun, S. W., Yang, S., Park, M., Shin, J., Do, K., Lee, M., Kang, K., Hwang, C. S., Lu, N., Hyeon, T., & Kim, D.-H. (2014). Multifunctional wearable devices for diagnosis and therapy of movement disorder. Nature Nanotechnology, 9, 397–404.CrossRefGoogle Scholar
  37. 37.
    Segev-Bar, M., Landman, A., Nir-Shaprira, M., Shuster, G., & Haick, H. (2013). Tunable touch sensor and combined sensing platform: Toward nanoparticle-based electronic skin. Applied Materials & Interfaces, 5, 5531–5541.CrossRefGoogle Scholar
  38. 38.
    Fever Scout. http://www.vivalnk.com/feverscout. Accessed 23 Feb 2016.
  39. 39.
    TempTraq™ wearable patch. https://www.temptraq.com/. Accessed 23 Feb 2016.
  40. 40.
    Giansanti, D., Maccioni, G., & Gigante, G. E. (2006). A comparative study for the development of a thermal odoscope for the wearable dynamic thermography monitoring. Medical Engineering & Physics, 28, 363–371.CrossRefGoogle Scholar
  41. 41.
    Giansanti, D., & Maccioni, G. (2007). Development and testing of a wearable integrated thermometer sensor for skin contact thermography. Medical Engineering & Physics, 29, 556–565.CrossRefGoogle Scholar
  42. 42.
    Thermal IR camera for smartphones. http://fraden.com/ourclients.html. 23 Feb 2016.
  43. 43.
    Popovic, Z., Momenroodaki, P., & Scheeler, R. (2014). Toward wearable wireless thermometers for internal body temperature measurements. IEEE Communication Magazine, 52(10), 118–125.CrossRefGoogle Scholar
  44. 44.
  45. 45.
    GaoSalvo, P., Di Francesco, F., Costanzo, D., et al. (2010). A wearable sensor for measuring sweat rate. IEEE Sensors Journal, 10(10), 1557–1558.CrossRefGoogle Scholar
  46. 46.
    Gao, W., Emaminejad, S., Nyein, H. Y. Y., et al. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529, 509–514.CrossRefGoogle Scholar
  47. 47.
    Bandodkar, A., Molinnus, D., Mirza, O., Guinovart, T., Windmiller, J. R., Valdes-Raminez, G., Andrade, F. J., Schoning, M. J., & Wang, J. (2014). Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosensors and Bioelectronics, 54, 603–609.CrossRefGoogle Scholar
  48. 48.
    Kim, J., de Araujo, W. R., Samek, I. A., et al. (2015). Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat. Electrochemistry Communications, 51, 41–45.CrossRefGoogle Scholar
  49. 49.
    2011 ENA Emergency Nursing Resources Development Committee, Barnason, S., Williams, J., Proehl, J., et al. (2011). Clinical practice guidelines: Non-invasive temperature measurement in the emergency department, pp. 1–14.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Future Robotics OrganizationWaseda UniversityShinjukuJapan
  2. 2.Graduate School of Information ScienceNara Institute of Science and TechnologyIkomaJapan
  3. 3.School of Human SciencesWaseda UniversityTokorozawa, SaitamaJapan

Personalised recommendations