Skip to main content

Osteoporosis in Premenopausal Women

  • Chapter
  • First Online:
Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Although osteoporosis occurs most commonly after menopause, premenopausal women can also present with low-trauma fractures or low bone mineral density (BMD). Diagnosis of osteoporosis and management in this population are different than for postmenopausal women. This chapter reviews the definition and epidemiology of premenopausal osteoporosis. It also addresses the interpretation of Dual X-ray Absorptiometry (DXA) results in premenopausal women. Furthermore, it describes normal bone mineral metabolism in young women including peak bone mass accrual and physiological changes of pregnancy and lactation that may affect interpretation of results.

Most premenopausal women with osteoporosis have an identifiable and potentially treatable cause of bone fragility. Therefore, a thorough clinical assessment is indicated for women who have unexplained fractures or low BMD. Treatment should focus on the underlying cause. Medications such as bisphosphonates and teriparatide can be recommended for some women with major fragility fractures or an ongoing cause of bone loss. However, there is a dearth of high-quality data on pharmacotherapy for premenopausal osteoporosis, and very few data to address future fracture risk reduction. This chapter reviews data on use of these and other medications for premenopausal osteoporosis in different clinical contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hui SL, Slemenda CW, Johnston CC Jr. Age and bone mass as predictors of fracture in a prospective study. J Clin Invest. 1988;81(6):1804–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hosmer WD, Genant HK, Browner WS. Fractures before menopause: a red flag for physicians. Osteoporos Int. 2002;13(4):337–41.

    Article  CAS  PubMed  Google Scholar 

  3. Melton LJ 3rd, Amadio PC, Crowson CS, O’Fallon WM. Long-term trends in the incidence of distal forearm fractures. Osteoporos Int. 1998;8(4):341–8.

    Article  PubMed  Google Scholar 

  4. Thompson PW, Taylor J, Dawson A. The annual incidence and seasonal variation of fractures of the distal radius in men and women over 25 years in Dorset, UK. Injury. 2004;35(5):462–6.

    Article  PubMed  Google Scholar 

  5. Wu F, Mason B, Horne A, et al. Fractures between the ages of 20 and 50 years increase women's risk of subsequent fractures. Arch Intern Med. 2002;162(1):33–6.

    Article  PubMed  Google Scholar 

  6. Honkanen R, Tuppurainen M, Kroger H, Alhava E, Puntila E. Associations of early premenopausal fractures with subsequent fractures vary by sites and mechanisms of fractures. Calcif Tissue Int. 1997;60(4):327–31.

    Article  CAS  PubMed  Google Scholar 

  7. Rothberg AD, Matshidze PK. Perimenopausal wrist fracture–an opportunity for prevention and management of osteoporosis. S Afr Med J. 2000;90(11):1121–4.

    CAS  PubMed  Google Scholar 

  8. Kanis JA, Melton LJ 3rd, Christiansen C, Johnston CC, Khaltaev N. The diagnosis of osteoporosis. J Bone Miner Res. 1994;9(8):1137–41.

    Article  CAS  PubMed  Google Scholar 

  9. Wigderowitz CA, Cunningham T, Rowley DI, Mole PA, Paterson CR. Peripheral bone mineral density in patients with distal radial fractures. J Bone Joint Surg Br. 2003;85(3):423–5.

    Article  CAS  PubMed  Google Scholar 

  10. Hung LK, Wu HT, Leung PC, Qin L. Low BMD is a risk factor for low-energy Colles’ fractures in women before and after menopause. Clin Orthop Relat Res. 2005;(435):219–25.

    Google Scholar 

  11. Lappe J, Davies K, Recker R, Heaney R. Quantitative ultrasound: use in screening for susceptibility to stress fractures in female army recruits. J Bone Miner Res. 2005;20(4):571–8.

    Article  PubMed  Google Scholar 

  12. Lauder TD, Dixit S, Pezzin LE, Williams MV, Campbell CS, Davis GD. The relation between stress fractures and bone mineral density: evidence from active-duty Army women. Arch Phys Med Rehabil. 2000;81(1):73–9.

    Article  CAS  PubMed  Google Scholar 

  13. Myburgh KH, Hutchins J, Fataar AB, Hough SF, Noakes TD. Low bone density is an etiologic factor for stress fractures in athletes. Ann Intern Med. 1990;113(10):754–9.

    Article  CAS  PubMed  Google Scholar 

  14. Lewiecki EM, Kendler DL, Kiebzak GM, et al. Special report on the official positions of the International Society for Clinical Densitometry. Osteoporos Int. 2004;15(10):779–84.

    Article  CAS  PubMed  Google Scholar 

  15. Lewiecki EM, Gordon CM, Baim S, et al. Special report on the 2007 adult and pediatric position development conferences of the International Society for Clinical Densitometry. Osteoporos Int. 2008;19(10):1369–78.

    Article  CAS  PubMed  Google Scholar 

  16. Lewiecki EM, Gordon CM, Baim S, et al. International Society for Clinical Densitometry 2007 adult and pediatric official positions. Bone. 2008;43(6):1115–21.

    Article  PubMed  Google Scholar 

  17. Ferrari S, Bianchi ML, Eisman JA, et al. Osteoporosis in young adults: pathophysiology, diagnosis, and management. Osteoporos Int. 2012;23(12):2735.

    Article  CAS  PubMed  Google Scholar 

  18. Schousboe JT, Shepherd JA, Bilezikian JP, Baim S. Executive summary of the 2013 International Society for Clinical Densitometry Position Development Conference on bone densitometry. J Clin Densitom. 2013;16(4):455–66.

    Article  PubMed  Google Scholar 

  19. Lindsay R. Bone mass measurement for premenopausal women. Osteoporos Int. 1994;4(Suppl 1):39–41.

    Article  PubMed  Google Scholar 

  20. Gourlay ML, Brown SA. Clinical considerations in premenopausal osteoporosis. Arch Intern Med. 2004;164(6):603–14.

    Article  PubMed  Google Scholar 

  21. Leib ES. Treatment of low bone mass in premenopausal women: when may it be appropriate? Curr Osteoporos Rep. 2005;3(1):13–8.

    Article  PubMed  Google Scholar 

  22. Licata AA. “Does she or doesn’t she...Have osteoporosis?” The use and abuse of bone densitometry. Endocrne Pract. 2000;6(4):336–7.

    CAS  Google Scholar 

  23. Cohen A, Dempster D, Recker R, et al. Abnormal bone microarchitecture and evidence of osteoblast dysfunction in premenopausal women with idiopathic osteoporosis. J Clin Endocrinol Metab. 2011;96:3095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cohen A, Liu XS, Stein EM, et al. Bone microarchitecture and stiffness in premenopausal women with idiopathic osteoporosis. J Clin Endocrinol Metab. 2009;94(11):4351–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Galusca B, Zouch M, Germain N, et al. Constitutional thinness: unusual human phenotype of low bone quality. J Clin Endocrinol Metab. 2008;93(1):110–7.

    Article  CAS  PubMed  Google Scholar 

  26. Cohen A, Lang TF, McMahon DJ, et al. Central QCT reveals lower volumetric BMD and stiffness in premenopausal women with idiopathic osteoporosis, regardless of fracture history. J Clin Endocrinol Metabol. 2012;97(11):4244.

    Article  CAS  Google Scholar 

  27. Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab. 1991;73(3):555–63.

    Article  CAS  PubMed  Google Scholar 

  28. Nguyen TV, Maynard LM, Towne B, et al. Sex differences in bone mass acquisition during growth: the Fels Longitudinal Study. J Clin Densitom. 2001;4(2):147–57.

    Article  CAS  PubMed  Google Scholar 

  29. Walker MD, Babbar R, Opotowsky AR, et al. A referent bone mineral density database for Chinese American women. Osteoporos Int. 2006;17(6):878–87.

    Article  PubMed  Google Scholar 

  30. Chevalley T, Rizzoli R, Hans D, Ferrari S, Bonjour JP. Interaction between calcium intake and menarcheal age on bone mass gain: an eight-year follow-up study from prepuberty to postmenarche. J Clin Endocrinol Metab. 2005;90(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  31. Rosenthal DI, Mayo-Smith W, Hayes CW, et al. Age and bone mass in premenopausal women. J Bone Miner Res. 1989;4(4):533–8.

    Article  CAS  PubMed  Google Scholar 

  32. Theintz G, Buchs B, Rizzoli R, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992;75(4):1060–5.

    CAS  PubMed  Google Scholar 

  33. Bachrach LK, Hastie T, Wang MC, Narasimhan B, Marcus R. Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. J Clin Endocrinol Metab. 1999;84(12):4702–12.

    CAS  PubMed  Google Scholar 

  34. Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999;14(10):1672–9.

    Article  CAS  PubMed  Google Scholar 

  35. Recker RR, Davies KM, Hinders SM, Heaney RP, Stegman MR, Kimmel DB. Bone gain in young adult women. JAMA. 1992;268(17):2403–8.

    Article  CAS  PubMed  Google Scholar 

  36. Lofman O, Larsson L, Toss G. Bone mineral density in diagnosis of osteoporosis: reference population, definition of peak bone mass, and measured site determine prevalence. J Clin Densitom. 2000;3(2):177–86.

    Article  CAS  PubMed  Google Scholar 

  37. Heaney RP, Skillman TG. Calcium metabolism in normal human pregnancy. J Clin Endocrinol Metab. 1971;33(4):661–70.

    Article  CAS  PubMed  Google Scholar 

  38. Kovacs CS. Calcium and bone metabolism disorders during pregnancy and lactation. Endocrinol Metab Clin N Am. 2011;40(4):795–826.

    Article  CAS  Google Scholar 

  39. Wasserman RH, Comar CL, Nold MM, Lengemann FW. Placental transfer of calcium and strontium in the rat and rabbit. Am J Phys. 1957;189(1):91–7.

    Article  CAS  Google Scholar 

  40. Karlsson MK, Ahlborg HG, Karlsson C. Maternity and bone mineral density. Acta Orthop. 2005;76(1):2–13.

    Article  PubMed  Google Scholar 

  41. Kovacs CS. Maternal mineral and bone metabolism during pregnancy, lactation, and post-weaning recovery. Physiol Rev. 2016;96(2):449–547.

    Article  CAS  PubMed  Google Scholar 

  42. Kovacs CS, Ralston SH. Presentation and management of osteoporosis presenting in association with pregnancy or lactation. Osteoporos Int. 2015;26(9):2223–41.

    Article  CAS  PubMed  Google Scholar 

  43. Moller UK, Vieth Streym S, Mosekilde L, Rejnmark L. Changes in bone mineral density and body composition during pregnancy and postpartum. A controlled cohort study. Osteoporos Int. 2012;23(4):1213–23.

    Article  CAS  PubMed  Google Scholar 

  44. Gambacciani M, Spinetti A, Gallo R, Cappagli B, Teti GC, Facchini V. Ultrasonographic bone characteristics during normal pregnancy: longitudinal and cross-sectional evaluation. Am J Obstet Gynecol. 1995;173(3 Pt 1):890–3.

    Article  CAS  PubMed  Google Scholar 

  45. Ritchie LD, Fung EB, Halloran BP, et al. A longitudinal study of calcium homeostasis during human pregnancy and lactation and after resumption of menses. Am J Clin Nutr. 1998;67(4):693–701.

    Article  CAS  PubMed  Google Scholar 

  46. Sowers MF, Hollis BW, Shapiro B, et al. Elevated parathyroid hormone-related peptide associated with lactation and bone density loss. JAMA. 1996;276(7):549–54.

    Article  CAS  PubMed  Google Scholar 

  47. Karlsson C, Obrant KJ, Karlsson M. Pregnancy and lactation confer reversible bone loss in humans. Osteoporos Int. 2001;12(10):828–34.

    Article  CAS  PubMed  Google Scholar 

  48. Kolthoff N, Eiken P, Kristensen B, Nielsen SP. Bone mineral changes during pregnancy and lactation: a longitudinal cohort study. Clin Sci (Lond). 1998;94(4):405–12.

    Article  CAS  Google Scholar 

  49. Sowers M, Corton G, Shapiro B, et al. Changes in bone density with lactation. JAMA. 1993;269(24):3130–5.

    Article  CAS  PubMed  Google Scholar 

  50. Sowers M, Eyre D, Hollis BW, et al. Biochemical markers of bone turnover in lactating and nonlactating postpartum women. J Clin Endocrinol Metab. 1995;80(7):2210–6.

    CAS  PubMed  Google Scholar 

  51. Kepley A, Boutroy S, Zhang C, et al. In breastfeeding women, trabecular bone loss at the radius, seen by high resolution peripheral quantitative CT, persists at 18 months postpartum. Paper presented at: American Society for Bone and Mineral Research 34th Annual Meeting, 2012.

    Google Scholar 

  52. Kalkwarf HJ, Specker BL, Bianchi DC, Ranz J, Ho M. The effect of calcium supplementation on bone density during lactation and after weaning. N Engl J Med. 1997;337(8):523–8.

    Article  CAS  PubMed  Google Scholar 

  53. Polatti F, Capuzzo E, Viazzo F, Colleoni R, Klersy C. Bone mineral changes during and after lactation. Obstet Gynecol. 1999;94(1):52–6.

    CAS  PubMed  Google Scholar 

  54. Laskey MA, Prentice A. Bone mineral changes during and after lactation. Obstet Gynecol. 1999;94(4):608–15.

    CAS  PubMed  Google Scholar 

  55. Liu XS, Ardeshirpour L, VanHouten JN, Shane E, Wysolmerski JJ. Site-specific changes in bone microarchitecture, mineralization, and stiffness during lactation and after weaning in mice. J Bone Miner Res. 2012;27(4):865–75.

    Article  CAS  PubMed  Google Scholar 

  56. Pearson D, Kaur M, San P, Lawson N, Baker P, Hosking D. Recovery of pregnancy mediated bone loss during lactation. Bone. 2004;34(3):570–8.

    Article  CAS  PubMed  Google Scholar 

  57. Alderman BW, Weiss NS, Daling JR, Ure CL, Ballard JH. Reproductive history and postmenopausal risk of hip and forearm fracture. Am J Epidemiol. 1986;124(2):262–7.

    Article  CAS  PubMed  Google Scholar 

  58. Cummings SR, Nevitt MC, Browner WS, et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med. 1995;332(12):767–73.

    Article  CAS  PubMed  Google Scholar 

  59. Michaelsson K, Baron JA, Farahmand BY, Ljunghall S. Influence of parity and lactation on hip fracture risk. Am J Epidemiol. 2001;153(12):1166–72.

    Article  CAS  PubMed  Google Scholar 

  60. Karlsson MK, Ahlborg HG, Karlsson C. Female reproductive history and the skeleton-a review. BJOG. 2005;112(7):851–6.

    Article  PubMed  Google Scholar 

  61. Specker B, Binkley T. High parity is associated with increased bone size and strength. Osteoporos Int. 2005;16(12):1969–74.

    Article  PubMed  Google Scholar 

  62. Aloia JF, Cohn SH, Vaswani A, Yeh JK, Yuen K, Ellis K. Risk factors for postmenopausal osteoporosis. Am J Med. 1985;78(1):95–100.

    Article  CAS  PubMed  Google Scholar 

  63. Aloia JF, Vaswani AN, Yeh JK, Ross P, Ellis K, Cohn SH. Determinants of bone mass in postmenopausal women. Arch Intern Med. 1983;143(9):1700–4.

    Article  CAS  PubMed  Google Scholar 

  64. Bjornerem A, Ahmed LA, Jorgensen L, Stormer J, Joakimsen RM. Breastfeeding protects against hip fracture in postmenopausal women: the Tromso study. J Bone Miner Res. 2011;26(12):2843–50.

    Article  PubMed  Google Scholar 

  65. Cure CC, Ramirez PC, Lopez-Jaramillo P. Osteoporosis, pregnancy, and lactation. Lancet. 1998;352(9135):1227–8.

    Article  CAS  PubMed  Google Scholar 

  66. Cure-Cure C, Cure-Ramirez P, Teran E, Lopez-Jaramillo P. Bone-mass peak in multiparity and reduced risk of bone-fractures in menopause. Int J Gynaecol Obstet. 2002;76(3):285–91.

    Article  CAS  PubMed  Google Scholar 

  67. Feldblum PJ, Zhang J, Rich LE, Fortney JA, Talmage RV. Lactation history and bone mineral density among perimenopausal women. Epidemiology. 1992;3(6):527–31.

    Article  CAS  PubMed  Google Scholar 

  68. Kreiger N, Kelsey JL, Holford TR, O’Connor T. An epidemiologic study of hip fracture in postmenopausal women. Am J Epidemiol. 1982;116(1):141–8.

    Article  CAS  PubMed  Google Scholar 

  69. Kovacs CS. Osteoporosis presenting in pregnancy, puerperium, and lactation. Curr Opin Endocrinol Diabetes Obes. 2014;21(6):468–75.

    Article  PubMed  Google Scholar 

  70. Henderson PH 3rd, Sowers M, Kutzko KE, Jannausch ML. Bone mineral density in grand multiparous women with extended lactation. Am J Obstet Gynecol. 2000;182(6):1371–7.

    Article  PubMed  Google Scholar 

  71. Sowers M, Randolph J, Shapiro B, Jannausch M. A prospective study of bone density and pregnancy after an extended period of lactation with bone loss. Obstet Gynecol. 1995;85(2):285–9.

    Article  CAS  PubMed  Google Scholar 

  72. Crandall CJ, Liu J, Cauley J, et al. Associations of parity, breastfeeding, and fractures in the women’s health observational study. Obstet Gynecol. 2017;130(1):171–80.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Song SY, Kim Y, Park H, Kim YJ, Kang W, Kim EY. Effect of parity on bone mineral density: a systematic review and meta-analysis. Bone. 2017;101:70–6.

    Article  PubMed  Google Scholar 

  74. Dursun N, Akin S, Dursun E, Sade I, Korkusuz F. Influence of duration of total breast-feeding on bone mineral density in a Turkish population: does the priority of risk factors differ from society to society? Osteoporos Int. 2006;17(5):651–5.

    Article  CAS  PubMed  Google Scholar 

  75. Khoo CC, Woo J, Leung PC, Kwok A, Kwok T. Determinants of bone mineral density in older postmenopausal Chinese women. Climacteric. 2011;14(3):378–83.

    Article  CAS  PubMed  Google Scholar 

  76. Rojano-Mejia D, Aguilar-Madrid G, Lopez-Medina G, et al. Risk factors and impact on bone mineral density in postmenopausal Mexican mestizo women. Menopause. 2011;18(3):302–6.

    Article  PubMed  Google Scholar 

  77. O'Sullivan SM, Grey AB, Singh R, Reid IR. Bisphosphonates in pregnancy and lactation-associated osteoporosis. Osteoporos Int. 2006;17(7):1008–12.

    Article  CAS  PubMed  Google Scholar 

  78. Blanch J, Pacifici R, Chines A. Pregnancy-associated osteoporosis: report of two cases with long-term bone density follow-up. Br J Rheumatol. 1994;33(3):269–72.

    Article  CAS  PubMed  Google Scholar 

  79. Smith R, Athanasou NA, Ostlere SJ, Vipond SE. Pregnancy-associated osteoporosis. QJM. 1995;88(12):865–78.

    CAS  PubMed  Google Scholar 

  80. Kyvernitakis I, Reuter TC, Hellmeyer L, Hars O, Hadji P. Subsequent fracture risk of women with pregnancy and lactation-associated osteoporosis after a median of 6 years of follow-up. Osteoporos Int. 2018;29(1):135–42.

    Article  CAS  PubMed  Google Scholar 

  81. Hellmeyer L, Boekhoff J, Hadji P. Treatment with teriparatide in a patient with pregnancy-associated osteoporosis. Gynecol Endocrinol. 2010;26(10):725–8.

    Article  CAS  PubMed  Google Scholar 

  82. Choe EY, Song JE, Park KH, et al. Effect of teriparatide on pregnancy and lactation-associated osteoporosis with multiple vertebral fractures. J Bone Miner Metab. 2012;30(5):596–601.

    Article  CAS  PubMed  Google Scholar 

  83. Iwamoto J, Sato Y, Uzawa M, Matsumoto H. Five-year follow-up of a woman with pregnancy and lactation-associated osteoporosis and vertebral fractures. Ther Clin Risk Manag. 2012;8:195–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nakamura Y, Kamimura M, Ikegami S, et al. A case series of pregnancy- and lactation-associated osteoporosis and a review of the literature. Ther Clin Risk Manag. 2015;11:1361–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ozdemir D, Tam AA, Dirikoc A, Ersoy R, Cakir B. Postpartum osteoporosis and vertebral fractures in two patients treated with enoxaparin during pregnancy. Osteoporos Int. 2015;26(1):415–8.

    Article  CAS  PubMed  Google Scholar 

  86. Lampropoulou-Adamidou K, Trovas G, Stathopoulos IP, Papaioannou NA. Case report: Teriparatide treatment in a case of severe pregnancy -and lactation- associated osteoporosis. Hormones (Athens). 2012;11(4):495–500.

    Article  Google Scholar 

  87. Yamamoto N, Takahashi HE, Tanizawa T, Kawashima T, Endo N. Bone mineral density and bone histomorphometric assessments of postpregnancy osteoporosis: a report of five patients. Calcif Tissue Int. 1994;54(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  88. Phillips AJ, Ostlere SJ, Smith R. Pregnancy-associated osteoporosis: does the skeleton recover? Osteoporos Int. 2000;11(5):449–54.

    Article  CAS  PubMed  Google Scholar 

  89. Vujasinovic-Stupar N, Pejnovic N, Markovic L, Zlatanovic M. Pregnancy-associated spinal osteoporosis treated with bisphosphonates: long-term follow-up of maternal and infants outcome. Rheumatol Int. 2012;32(3):819–23.

    Article  PubMed  Google Scholar 

  90. Sarikaya S, Ozdolap S, Acikgoz G, Erdem CZ. Pregnancy-associated osteoporosis with vertebral fractures and scoliosis. Joint Bone Spine. 2004;71(1):84–5.

    Article  PubMed  Google Scholar 

  91. Ozturk C, Atamaz FC, Akkurt H, Akkoc Y. Pregnancy-associated osteoporosis presenting severe vertebral fractures. J Obstet Gynaecol Res. 2014;40(1):288–92.

    Article  CAS  PubMed  Google Scholar 

  92. Bonacker J, Janousek M, Krober M. Pregnancy-associated osteoporosis with eight fractures in the vertebral column treated with kyphoplasty and bracing: a case report. Arch Orthop Trauma Surg. 2014;134(2):173–9.

    Article  CAS  PubMed  Google Scholar 

  93. Jensen J, Mortensen G. Pregnancy associated osteoporosis. Ugeskr Laeger. 2000;162(27):3865–6.

    CAS  PubMed  Google Scholar 

  94. Gruber HE, Gutteridge DH, Baylink DJ. Osteoporosis associated with pregnancy and lactation: bone biopsy and skeletal features in three patients. Metab Bone Dis Relat Res. 1984;5(4):159–65.

    Article  CAS  PubMed  Google Scholar 

  95. Smith R, Stevenson JC, Winearls CG, Woods CG, Wordsworth BP. Osteoporosis of pregnancy. Lancet. 1985;1(8439):1178–80.

    Article  CAS  PubMed  Google Scholar 

  96. Rolvien T, Sturznickel J, Schmidt FN, et al. Comparison of bone microarchitecture between adult osteogenesis imperfecta and early-onset osteoporosis. Calcif Tissue Int. 2018;103(5):512–21.

    Article  CAS  PubMed  Google Scholar 

  97. Campos-Obando N, Oei L, Hoefsloot LH, et al. Osteoporotic vertebral fractures during pregnancy: be aware of a potential underlying genetic cause. J Clin Endocrinol Metab. 2014;99(4):1107–11.

    Article  CAS  PubMed  Google Scholar 

  98. Cook FJ, Mumm S, Whyte MP, Wenkert D. Pregnancy-associated osteoporosis with a heterozygous deactivating LDL receptor-related protein 5 (LRP5) mutation and a homozygous methylenetetrahydrofolate reductase (MTHFR) polymorphism. J Bone Miner Res. 2014;29(4):922–8.

    Article  CAS  PubMed  Google Scholar 

  99. Hartikka H, Makitie O, Mannikko M, et al. Heterozygous mutations in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J Bone Miner Res. 2005;20(5):783–9.

    Article  CAS  PubMed  Google Scholar 

  100. Khosla S, Lufkin EG, Hodgson SF, Fitzpatrick LA, Melton LJ 3rd. Epidemiology and clinical features of osteoporosis in young individuals. Bone. 1994;15(5):551–5.

    Article  CAS  PubMed  Google Scholar 

  101. Moreira Kulak CA, Schussheim DH, McMahon DJ, et al. Osteoporosis and low bone mass in premenopausal and perimenopausal women. Endocr Pract. 2000;6(4):296–304.

    Article  CAS  PubMed  Google Scholar 

  102. Peris P, Guanabens N, Martinez de Osaba MJ, et al. Clinical characteristics and etiologic factors of premenopausal osteoporosis in a group of Spanish women. Semin Arthritis Rheum. 2002;32(1):64–70.

    Article  PubMed  Google Scholar 

  103. Cohen A, Fleischer J, Freeby MJ, McMahon DJ, Irani D, Shane E. Clinical characteristics and medication use among premenopausal women with osteoporosis and low BMD: the experience of an osteoporosis referral center. J Womens Health (Larchmt). 2009;18(1):79–84.

    Article  Google Scholar 

  104. Griffith GC, Nichols G Jr, Asher JD, Flanagan B. Heparin osteoporosis. JAMA. 1965;193:91–4.

    Article  CAS  PubMed  Google Scholar 

  105. Monreal M, Olive A, Lafoz E, Del Rio L. Heparins, coumarin, and bone density. Lancet. 1991;338(8768):706.

    Article  CAS  PubMed  Google Scholar 

  106. Dahlman TC, Sjoberg HE, Ringertz H. Bone mineral density during long-term prophylaxis with heparin in pregnancy. Am J Obstet Gynecol. 1994;170(5 Pt 1):1315–20.

    Article  CAS  PubMed  Google Scholar 

  107. Dahlman TC. Osteoporotic fractures and the recurrence of thromboembolism during pregnancy and the puerperium in 184 women undergoing thromboprophylaxis with heparin. Am J Obstet Gynecol. 1993;168(4):1265–70.

    Article  CAS  PubMed  Google Scholar 

  108. Backos M, Rai R, Thomas E, Murphy M, Dore C, Regan L. Bone density changes in pregnant women treated with heparin: a prospective, longitudinal study. Hum Reprod. 1999;14(11):2876–80.

    Article  CAS  PubMed  Google Scholar 

  109. Galambosi P, Hiilesmaa V, Ulander VM, Laitinen L, Tiitinen A, Kaaja R. Prolonged low-molecular-weight heparin use during pregnancy and subsequent bone mineral density. Thromb Res. 2016;143:122–6.

    Article  CAS  PubMed  Google Scholar 

  110. Singh N, Varshney P, Tripathi R, Mala YM, Tyagi S. Safety and efficacy of low molecular weight heparin therapy during pregnancy: three year experience at a tertiary care center. J Obstet Gynaecol India. 2013;63(6):373–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gajic-Veljanoski O, Phua CW, Shah PS, Cheung AM. Effects of long-term low-molecular-weight heparin on fractures and bone density in non-pregnant adults: a systematic review with meta-analysis. J Gen Intern Med. 2016;31(8):947–57.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lumachi F, Camozzi V, Ermani M, DE Lotto F, Luisetto G. Bone mineral density improvement after successful parathyroidectomy in pre- and postmenopausal women with primary hyperparathyroidism: a prospective study. Ann N Y Acad Sci. 2007;1117:357–61.

    Article  CAS  PubMed  Google Scholar 

  113. Ciacci C, Maurelli L, Klain M, et al. Effects of dietary treatment on bone mineral density in adults with celiac disease: factors predicting response. Am J Gastroenterol. 1997;92(6):992–6.

    CAS  PubMed  Google Scholar 

  114. Mautalen C, Gonzalez D, Mazure R, et al. Effect of treatment on bone mass, mineral metabolism, and body composition in untreated celiac disease patients. Am J Gastroenterol. 1997;92(2):313–8.

    CAS  PubMed  Google Scholar 

  115. McFarlane XA, Bhalla AK, Robertson DA. Effect of a gluten free diet on osteopenia in adults with newly diagnosed coeliac disease. Gut. 1996;39(2):180–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Adams JS, Song CF, Kantorovich V. Rapid recovery of bone mass in hypercalciuric, osteoporotic men treated with hydrochlorothiazide. Ann Intern Med. 1999;130(8):658–60.

    Article  CAS  PubMed  Google Scholar 

  117. Mauro M, Radovic V, Armstrong D. Improvement of lumbar bone mass after infliximab therapy in Crohn’s disease patients. Can J Gastroenterol. 2007;21(10):637–42.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Cohen A, Recker RR, Lappe J, et al. Premenopausal women with idiopathic low-trauma fractures and/or low bone mineral density. Osteoporos Int. 2012;23(1):171–82.

    Article  CAS  PubMed  Google Scholar 

  119. Kulak CAM, Schussheim DH, McMahon DJ, et al. Osteoporosis and low bone mass in premenopausal and perimenopausal women. Endocr Pract. 2000;6:296–304.

    Article  Google Scholar 

  120. Rubin MR, Schussheim DH, Kulak CA, et al. Idiopathic osteoporosis in premenopausal women. Osteoporos Int. 2005;16(5):526–33.

    Article  PubMed  Google Scholar 

  121. Peris P, Ruiz-Esquide V, Monegal A, et al. Idiopathic osteoporosis in premenopausal women. Clinical characteristics and bone remodelling abnormalities. Clin Exp Rheumatol. 2008;26(6):986–91.

    CAS  PubMed  Google Scholar 

  122. Peris P, Monegal A, Martinez MA, Moll C, Pons F, Guanabens N. Bone mineral density evolution in young premenopausal women with idiopathic osteoporosis. Clin Rheumatol. 2007;26(6):958–61.

    Article  PubMed  Google Scholar 

  123. Miller KK, Lee EE, Lawson EA, et al. Determinants of skeletal loss and recovery in anorexia nervosa. J Clin Endocrinol Metab. 2006;91(8):2931–7.

    Article  CAS  PubMed  Google Scholar 

  124. Kawamata A, Iihara M, Okamoto T, Obara T. Bone mineral density before and after surgical cure of Cushing’s syndrome due to adrenocortical adenoma: prospective study. World J Surg. 2008;32(5):890–6.

    Article  PubMed  Google Scholar 

  125. Wallace BA, Cumming RG. Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif Tissue Int. 2000;67(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  126. Kelley GA, Kelley KS, Kohrt WM. Exercise and bone mineral density in premenopausal women: a meta-analysis of randomized controlled trials. Int J Endocrinol. 2013;2013:741639.

    PubMed  PubMed Central  Google Scholar 

  127. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  128. Force USPST. Vitamin d, calcium, or combined supplementation for the primary prevention of fractures in community-dwelling adults: us preventive services task force recommendation statement. JAMA. 2018;319(15):1592–9.

    Article  Google Scholar 

  129. Cundy T, Ames R, Horne A, et al. A randomized controlled trial of estrogen replacement therapy in long-term users of depot medroxyprogesterone acetate. J Clin Endocrinol Metab. 2003;88(1):78–81.

    Article  CAS  PubMed  Google Scholar 

  130. Liu SL, Lebrun CM. Effect of oral contraceptives and hormone replacement therapy on bone mineral density in premenopausal and perimenopausal women: a systematic review. Br J Sports Med. 2006;40(1):11–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sagsveen M, Farmer JE, Prentice A, Breeze A. Gonadotrophin-releasing hormone analogues for endometriosis: bone mineral density. Cochrane Database Syst Rev. 2003;(4):CD001297.

    Google Scholar 

  132. Sim LA, McGovern L, Elamin MB, Swiglo BA, Erwin PJ, Montori VM. Effect on bone health of estrogen preparations in premenopausal women with anorexia nervosa: a systematic review and meta-analyses. Int J Eat Disord. 2010;43(3):218–25.

    PubMed  Google Scholar 

  133. Lopez LM, Grimes DA, Schulz KF, Curtis KM. Steroidal contraceptives: effect on bone fractures in women. Cochrane Database Syst Rev. 2011;(7):CD006033.

    Google Scholar 

  134. Wei S, Winzenberg T, Laslett LL, Venn A, Jones G. Oral contraceptive use and bone. Curr Osteoporos Rep. 2011;9(1):6–11.

    Article  PubMed  Google Scholar 

  135. Lopez LM, Chen M, Mullins Long S, Curtis KM, Helmerhorst FM. Steroidal contraceptives and bone fractures in women: evidence from observational studies. Cochrane Database Syst Rev. 2015;(7):CD009849.

    Google Scholar 

  136. Scholes D, Ichikawa L, LaCroix AZ, et al. Oral contraceptive use and bone density in adolescent and young adult women. Contraception. 2010;81(1):35–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cromer BA. Bone mineral density in adolescent and young adult women on injectable or oral contraception. Curr Opin Obstet Gynecol. 2003;15(5):353–7.

    Article  PubMed  Google Scholar 

  138. Polatti F, Perotti F, Filippa N, Gallina D, Nappi RE. Bone mass and long-term monophasic oral contraceptive treatment in young women. Contraception. 1995;51(4):221–4.

    Article  CAS  PubMed  Google Scholar 

  139. Dombrowski S, Jacob L, Hadji P, Kostev K. Oral contraceptive use and fracture risk-a retrospective study of 12,970 women in the UK. Osteoporos Int. 2017;28(8):2349–55.

    Article  CAS  PubMed  Google Scholar 

  140. Cobb KL, Bachrach LK, Sowers M, et al. The effect of oral contraceptives on bone mass and stress fractures in female runners. Med Sci Sports Exerc. 2007;39(9):1464–73.

    Article  CAS  PubMed  Google Scholar 

  141. Powles TJ, Hickish T, Kanis JA, Tidy A, Ashley S. Effect of tamoxifen on bone mineral density measured by dual-energy x-ray absorptiometry in healthy premenopausal and postmenopausal women. J Clin Oncol. 1996;14(1):78–84.

    Article  CAS  PubMed  Google Scholar 

  142. Vehmanen L, Elomaa I, Blomqvist C, Saarto T. Tamoxifen treatment after adjuvant chemotherapy has opposite effects on bone mineral density in premenopausal patients depending on menstrual status. J Clin Oncol. 2006;24(4):675–80.

    Article  CAS  PubMed  Google Scholar 

  143. Fuleihan Gel H, Salamoun M, Mourad YA, et al. Pamidronate in the prevention of chemotherapy-induced bone loss in premenopausal women with breast cancer: a randomized controlled trial. J Clin Endocrinol Metab. 2005;90(6):3209–14.

    Article  CAS  Google Scholar 

  144. Miller KK, Grieco KA, Mulder J, et al. Effects of risedronate on bone density in anorexia nervosa. J Clin Endocrinol Metab. 2004;89(8):3903–6.

    Article  CAS  PubMed  Google Scholar 

  145. Nakayamada S, Okada Y, Saito K, Tanaka Y. Etidronate prevents high dose glucocorticoid induced bone loss in premenopausal individuals with systemic autoimmune diseases. J Rheumatol. 2004;31(1):163–6.

    CAS  PubMed  Google Scholar 

  146. Nzeusseu Toukap A, Depresseux G, Devogelaer JP, Houssiau FA. Oral pamidronate prevents high-dose glucocorticoid-induced lumbar spine bone loss in premenopausal connective tissue disease (mainly lupus) patients. Lupus. 2005;14(7):517–20.

    Article  CAS  PubMed  Google Scholar 

  147. Kim JE, Ahn JH, Jung KH, et al. Zoledronic acid prevents bone loss in premenopausal women with early breast cancer undergoing adjuvant chemotherapy: a phase III trial of the Korean Cancer Study Group (KCSG-BR06-01). Breast Cancer Res Treat. 2011;125(1):99–106.

    Article  CAS  PubMed  Google Scholar 

  148. Conwell LS, Chang AB. Bisphosphonates for osteoporosis in people with cystic fibrosis. Cochrane Database Syst Rev. 2012;(4):CD002010.

    Google Scholar 

  149. Skordis N, Ioannou YS, Kyriakou A, et al. Effect of bisphosphonate treatment on bone mineral density in patients with thalassaemia major. Pediatr Endocrinol Rev. 2008;6(Suppl 1):144–8.

    PubMed  Google Scholar 

  150. Lindahl K, Langdahl B, Ljunggren O, Kindmark A. Treatment of osteogenesis imperfecta in adults. Eur J Endocrinol. 2014;171(2):R79–90.

    Article  CAS  PubMed  Google Scholar 

  151. Shane E, Burr D, Ebeling PR, et al. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2010;25(11):2267–94.

    Article  PubMed  Google Scholar 

  152. Minsker DH, Manson JM, Peter CP. Effects of the bisphosphonate, alendronate, on parturition in the rat. Toxicol Appl Pharmacol. 1993;121(2):217–23.

    Article  CAS  PubMed  Google Scholar 

  153. Munns CF, Rauch F, Ward L, Glorieux FH. Maternal and fetal outcome after long-term pamidronate treatment before conception: a report of two cases. J Bone Miner Res. 2004;19(10):1742–5.

    Article  PubMed  Google Scholar 

  154. Levy S, Fayez I, Taguchi N, et al. Pregnancy outcome following in utero exposure to bisphosphonates. Bone. 2009;44(3):428–30.

    Article  CAS  PubMed  Google Scholar 

  155. Ornoy A, Wajnberg R, Diav-Citrin O. The outcome of pregnancy following pre-pregnancy or early pregnancy alendronate treatment. Reprod Toxicol. 2006;22(4):578–9.

    Article  CAS  PubMed  Google Scholar 

  156. Fazeli PK, Wang IS, Miller KK, et al. Teriparatide increases bone formation and bone mineral density in adult women with anorexia nervosa. J Clin Endocrinol Metab. 2014;99(4):1322–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hong N, Kim JE, Lee SJ, Kim SH, Rhee Y. Changes in bone mineral density and bone turnover markers during treatment with teriparatide in pregnancy- and lactation-associated osteoporosis. Clin Endocrinol. 2018;88(5):652–8.

    Article  CAS  Google Scholar 

  158. Langdahl BL, Marin F, Shane E, et al. Teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: an analysis by gender and menopausal status. Osteoporos Int. 2009;20(12):2095–104.

    Article  CAS  PubMed  Google Scholar 

  159. Cohen A, Stein EM, Recker RR, et al. Teriparatide for idiopathic osteoporosis in premenopausal women: a pilot study. J Clin Endocrinol Metab. 2013;98(5):1971–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Finkelstein JS, Klibanski A, Arnold AL, Toth TL, Hornstein MD, Neer RM. Prevention of estrogen deficiency-related bone loss with human parathyroid hormone-(1-34): a randomized controlled trial. JAMA. 1998;280(12):1067–73.

    Article  CAS  PubMed  Google Scholar 

  161. Cohen A, Shiau S, Nair N, Williams JM, Recker RR, Lappe JM, Dempster DW, Zhou H, Kamanda-Kosseh M, Bucovsky M, Stubby J, Shane E. In A randomized, placebo-controlled trial of teriparatide (TPTD) for premenopausal Idiopathic Osteoporosis (IOP), tissue-level bone formation rate at baseline and 3 months predicts bone density response. American Society for Bone and Mineral Research, 40th Annual Meeting, 2018.

    Google Scholar 

  162. Adami S, San Martin J, Munoz-Torres M, et al. Effect of raloxifene after recombinant teriparatide [hPTH(1-34)] treatment in postmenopausal women with osteoporosis. Osteoporos Int. 2008;19(1):87–94.

    Article  CAS  PubMed  Google Scholar 

  163. Eastell R, Nickelsen T, Marin F, et al. Sequential treatment of severe postmenopausal osteoporosis after teriparatide: final results of the randomized, controlled European Study of Forsteo (EUROFORS). J Bone Miner Res. 2009;24(4):726–36.

    Article  CAS  PubMed  Google Scholar 

  164. Cosman F, Nieves J, Woelfert L, et al. Parathyroid hormone added to established hormone therapy: effects on vertebral fracture and maintenance of bone mass after parathyroid hormone withdrawal. J Bone Miner Res. 2001;16(5):925–31.

    Article  CAS  PubMed  Google Scholar 

  165. Lane NE, Sanchez S, Modin GW, Genant HK, Pierini E, Arnaud CD. Bone mass continues to increase at the hip after parathyroid hormone treatment is discontinued in glucocorticoid-induced osteoporosis: results of a randomized controlled clinical trial. J Bone Miner Res. 2000;15(5):944–51.

    Article  CAS  PubMed  Google Scholar 

  166. Cohen A, Kamanda-Kosseh M, Recker RR, et al. Bone density after teriparatide discontinuation in premenopausal idiopathic osteoporosis. J Clin Endocrinol Metab. 2015;100(11):4208–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Grizzo FM, da Silva Martins J, Pinheiro MM, Jorgetti V, Carvalho MD, Pelloso SM. Pregnancy and lactation-associated osteoporosis: bone histomorphometric analysis and response to treatment with zoledronic acid. Calcif Tissue Int. 2015;97(4):421–5.

    Article  CAS  PubMed  Google Scholar 

  168. Hellmeyer L, Kuhnert M, Ziller V, Schmidt S, Hadji P. The use of i. v. bisphosphonate in pregnancy-associated osteoporosis–case study. Exp Clin Endocrinol Diabetes. 2007;115(2):139–42.

    Article  CAS  PubMed  Google Scholar 

  169. Polat SB, Evranos B, Aydin C, Cuhaci N, Ersoy R, Cakir B. Effective treatment of severe pregnancy and lactation-related osteoporosis with teriparatide: case report and review of the literature. Gynecol Endocrinol. 2015;31(7):522–5.

    Article  PubMed  Google Scholar 

  170. Leder BZ, Tsai JN, Jiang LA, Lee H. Importance of prompt antiresorptive therapy in postmenopausal women discontinuing teriparatide or denosumab: the denosumab and teriparatide follow-up study (DATA-follow-up). Bone. 2017;98:54–8.

    Article  CAS  PubMed  Google Scholar 

  171. Phillipi CA, Remmington T, Steiner RD. Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst Rev. 2008;(4):CD005088.

    Google Scholar 

  172. Shapiro JR, Thompson CB, Wu Y, Nunes M, Gillen C. Bone mineral density and fracture rate in response to intravenous and oral bisphosphonates in adult osteogenesis imperfecta. Calcif Tissue Int. 2010;87(2):120–9.

    Article  CAS  PubMed  Google Scholar 

  173. Adami S, Gatti D, Colapietro F, et al. Intravenous neridronate in adults with osteogenesis imperfecta. J Bone Miner Res. 2003;18(1):126–30.

    Article  CAS  PubMed  Google Scholar 

  174. Chevrel G, Schott AM, Fontanges E, et al. Effects of oral alendronate on BMD in adult patients with osteogenesis imperfecta: a 3-year randomized placebo-controlled trial. J Bone Miner Res. 2006;21(2):300–6.

    Article  CAS  PubMed  Google Scholar 

  175. Pavon de Paz I, Iglesias Bolanos P, Duran Martinez M, Olivar Roldan J, Guijarro De Armas G, Parra Garcia JI. Effects of zoledronic acid in adults with osteogenesis imperfecta. Endocrinol Nutr. 2010;57(6):245–50.

    Article  PubMed  Google Scholar 

  176. O’Sullivan ES, van der Kamp S, Kilbane M, McKenna M. Osteogenesis imperfecta in adults: phenotypic characteristics and response to treatment in an Irish cohort. Ir J Med Sci. 2014;183(2):225–30.

    PubMed  Google Scholar 

  177. Bradbury LA, Barlow S, Geoghegan F, et al. Risedronate in adults with osteogenesis imperfecta type I: increased bone mineral density and decreased bone turnover, but high fracture rate persists. Osteoporos Int. 2012;23(1):285–94.

    Article  CAS  PubMed  Google Scholar 

  178. Orwoll ES, Shapiro J, Veith S, et al. Evaluation of teriparatide treatment in adults with osteogenesis imperfecta. J Clin Invest. 2014;124(2):491–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Leali PT, Balsano M, Maestretti G, et al. Efficacy of teriparatide vs neridronate in adults with osteogenesis imperfecta type I: a prospective randomized international clinical study. Clin Cases Miner Bone Metab. 2017;14(2):153–6.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Sutton RA, Mumm S, Coburn SP, Ericson KL, Whyte MP. “Atypical femoral fractures” during bisphosphonate exposure in adult hypophosphatasia. J Bone Miner Res. 2012;27(5):987–94.

    Article  CAS  PubMed  Google Scholar 

  181. Camacho PM, Mazhari AM, Wilczynski C, Kadanoff R, Mumm S, Whyte MP. Adult hypophosphatasia treated with teriparatide: report of 2 patients and review of the literature. Endocr Pract. 2016;22(8):941–50.

    Article  PubMed  Google Scholar 

  182. Whyte MP, Mumm S, Deal C. Adult hypophosphatasia treated with teriparatide. J Clin Endocrinol Metab. 2007;92(4):1203–8.

    Article  CAS  PubMed  Google Scholar 

  183. Shapiro JR, Lewiecki EM. Hypophosphatasia in adults: clinical assessment and treatment considerations. J Bone Miner Res. 2017;32(10):1977–80.

    Article  PubMed  Google Scholar 

  184. Buckley L, Guyatt G, Fink HA, et al. 2017 American College of Rheumatology Guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Rheumatol. 2017;69(8):1521–37.

    Article  PubMed  Google Scholar 

  185. Grossman JM, Gordon R, Ranganath VK, et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res (Hoboken). 2010;62(11):1515–26.

    Article  Google Scholar 

  186. Zhou C, Assem M, Tay JC, et al. Steroid and xenobiotic receptor and vitamin D receptor crosstalk mediates CYP24 expression and drug-induced osteomalacia. J Clin Invest. 2006;116(6):1703–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Holick MF. Optimal vitamin D status for the prevention and treatment of osteoporosis. Drugs Aging. 2007;24(12):1017–29.

    Article  CAS  PubMed  Google Scholar 

  188. Adachi JD, Bensen WG, Brown J, et al. Intermittent etidronate therapy to prevent corticosteroid-induced osteoporosis. N Engl J Med. 1997;337(6):382–7.

    Article  CAS  PubMed  Google Scholar 

  189. Saag KG, Emkey R, Schnitzer TJ, et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-induced osteoporosis intervention study group. N Engl J Med. 1998;339(5):292–9.

    Article  CAS  PubMed  Google Scholar 

  190. Wallach S, Cohen S, Reid DM, et al. Effects of risedronate treatment on bone density and vertebral fracture in patients on corticosteroid therapy. Calcif Tissue Int. 2000;67(4):277–85.

    Article  CAS  PubMed  Google Scholar 

  191. Saag KG, Shane E, Boonen S, et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med. 2007;357(20):2028–39.

    Article  CAS  PubMed  Google Scholar 

  192. Langdahl BL, Marin F, Shane E, et al. Teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: an analysis by gender and menopausal status. Osteoporos Int. 2009;20(12):2095.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adi Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, M., Nair, N., Cohen, A. (2020). Osteoporosis in Premenopausal Women. In: Leder, B., Wein, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-319-69287-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69287-6_23

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-319-69286-9

  • Online ISBN: 978-3-319-69287-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics