Skip to main content

Pulmonary Circulation

  • Chapter
Hemodynamic Monitoring

Part of the book series: Lessons from the ICU ((LEICU))

  • 4041 Accesses

Abstract

Pulmonary circulation is unique compared to systemic circulation because of its flexible structure that is able to meet the needs of gas exchange under different and sometimes extreme conditions. Unique for the pulmonary circulation are its shape, structure and compliance. Pulmonary arteries, veins and capillaries are embedded in and around the alveoli and are able to adapt, while the lung changes its shape or is compressed by the gravity. Small lung arterioles and veins are able to contract if exposed to hypoxia, a mechanism that is essential to divert blood flow away from non-ventilated areas.

Although the single determination of the pulmonary vascular resistance (calculated dividing transpulmonary pressure by blood flow) is a good indicator of the state of constriction or dilation of the pulmonary resistive vessels, it is not reliable regarding the evaluation of the functional status of the pulmonary circulation at variable flow rates. The functional properties of the pulmonary circulation are best assessed by the pressure/flow relationship at different levels of cardiac output.

Pulmonary hypertension is defined as a mean pulmonary artery pressure equal or above 25 mmHg and is classified as precapillary if pulmonary artery occlusion pressure or wedge pressure is ≤15 mmHg and postcapillary if >15 mmHg. Based on pathophysiological, clinical and therapeutic considerations, the pulmonary hypertension population is divided into five classes. The most frequent classes in the intensive care setting are pulmonary hypertension associated to left heart disease (class 2) and pulmonary hypertension due to lung disease and/or hypoxia (class 3). In the present chapter, we will provide the basic knowledge on the physiology and pathophysiology of the pulmonary circulation from the perspective of the clinician working in the intensive care unit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ElMaghawry M, Zanatta A, Zampieri F. The discovery of pulmonary circulation: from Imhotep to William Harvey. Glob Cardiol Sci Pract. 2014;2014(2):103–16.

    PubMed  PubMed Central  Google Scholar 

  2. West JB. Marcello Malpighi and the discovery of the pulmonary capillaries and alveoli. Am J Physiol Lung Cell Mol Physiol. 2013;304(6):L383–90.

    CAS  PubMed  Google Scholar 

  3. West JB. Ibn al-Nafis, the pulmonary circulation, and the Islamic Golden Age. J Appl Physiol (1985). 2008;105(6):1877–80.

    Google Scholar 

  4. van Wolferen SA, Grünberg K, Vonk Noordegraaf A. Diagnosis and management of pulmonary hypertension over the past 100 years. Respir Med. 2007;101(3):389–98.

    PubMed  Google Scholar 

  5. Cournand A, Riley RL, Breed ES, Baldwin ED, Richards DW, Lester MS, et al. Measurement of cardiac output in man using the technique of catheterization of the right auricle or ventricle. J Clin Invest. 1945;24(1):106–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Forssmann DW. Die Sondierung des Rechten Herzens. Klin Wochenschr. 1929;8(45):2085–7.

    Google Scholar 

  7. Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med. 1970;283(9):447–51.

    CAS  PubMed  Google Scholar 

  8. Iberti TJ, Fischer EP, Leibowitz AB, Panacek EA, Silverstein JH, Albertson TE. A multicenter study of physicians’ knowledge of the pulmonary artery catheter. Pulmonary Artery Catheter Study Group. JAMA. 1990;264(22):2928–32.

    CAS  PubMed  Google Scholar 

  9. Gnaegi A, Feihl F, Perret C. Intensive care physicians’ insufficient knowledge of right-heart catheterization at the bedside: time to act? Crit Care Med. 1997;25(2):213–20.

    CAS  PubMed  Google Scholar 

  10. O’Rourke MF. Arterial function in health and disease. London: Churchill Livingston; 1982.

    Google Scholar 

  11. Drake RE, Smith JH, Gabel JC. Estimation of the filtration coefficient in intact dog lungs. Am J Phys. 1980;238(4):H430–8.

    CAS  Google Scholar 

  12. Maggiorini M, Mélot C, Pierre S, Pfeiffer F, Greve I, Sartori C, et al. High-altitude pulmonary edema is initially caused by an increase in capillary pressure. Circulation. 2001;103(16):2078–83.

    CAS  PubMed  Google Scholar 

  13. Drake RE, Scott RL, Gabel JC. Relationship between weight gain and lymph flow in dog lungs. Am J Phys. 1983;245(1):H125–30.

    CAS  Google Scholar 

  14. Howell JB, Permutt S, Proctor DF, Riley RL. Effect of inflation of the lung on different parts of pulmonary vascular bed. J Appl Physiol. 1961;16:71–6.

    CAS  PubMed  Google Scholar 

  15. Lamm WJ, Kirk KR, Hanson WL, Wagner WW Jr, Albert RK. Flow through zone 1 lungs utilizes alveolar corner vessels. J Appl Physiol (1985). 1991;70(4):1518–23.

    CAS  Google Scholar 

  16. Lamm WJ, Obermiller T, Hlastala MP, Albert RK. Perfusion through vessels open in zone 1 contributes to gas exchange in rabbit lungs in situ. J Appl Physiol (1985). 1995;79(6):1895–9.

    CAS  Google Scholar 

  17. Conhaim RL, Rodenkirch LA. Functional diameters of alveolar microvessels at high lung volume in zone II. J Appl Physiol (1985). 1998;85(1):47–52.

    CAS  Google Scholar 

  18. Topulos GP, Brown RE, Butler JP. Increased surface tension decreases pulmonary capillary volume and compliance. J Appl Physiol (1985). 2002;93(3):1023–9.

    Google Scholar 

  19. Naeije R, Mélot C, Mols P, Hallemans R. Effects of vasodilators on hypoxic pulmonary vasoconstriction in normal man. Chest. 1982;82(4):404–10.

    CAS  PubMed  Google Scholar 

  20. Mélot C, Naeije R, Hallemans R, Lejeune P, Mols P. Hypoxic pulmonary vasoconstriction and pulmonary gas exchange in normal man. Respir Physiol. 1987;68(1):11–27.

    PubMed  Google Scholar 

  21. Hakim TS, Maarek JM, Chang HK. Estimation of pulmonary capillary pressure in intact dog lungs using the arterial occlusion technique. Am Rev Respir Dis. 1989;140(1):217–24.

    CAS  PubMed  Google Scholar 

  22. Maarek JM, Hakim TS, Chang HK. Analysis of pulmonary arterial pressure profile after occlusion of pulsatile blood flow. J Appl Physiol (1985). 1990;68(2):761–9.

    CAS  Google Scholar 

  23. Gaar KA J, Taylor AE, Owens LJ, Guyton AC. Pulmonary capillary pressure and filtration coefficient in the isolated perfused lung. Am J Phys. 1967;213(4):910–4.

    Google Scholar 

  24. Nunes S, Ruokonen E, Takala J. Pulmonary capillary pressures during the acute respiratory distress syndrome. Intensive Care Med. 2003;29(12):2174–9.

    PubMed  Google Scholar 

  25. Kovacs G, Olschewski A, Berghold A, Olschewski H. Pulmonary vascular resistances during exercise in normal subjects: a systematic review. Eur Respir J. 2012;39(2):319–28.

    CAS  PubMed  Google Scholar 

  26. Naeije R, Chesler N. Pulmonary circulation at exercise. Compr Physiol. 2012;2(1):711–41.

    PubMed  PubMed Central  Google Scholar 

  27. Naeije R, Lipski A, Abramowicz M, Lejeune P, Mélot C, Antoine M, et al. Nature of pulmonary hypertension in congestive heart failure. Effects of cardiac transplantation. Am J Respir Crit Care Med. 1994;149(4 Pt 1):881–7.

    CAS  PubMed  Google Scholar 

  28. Zapol WM, Snider MT. Pulmonary hypertension in severe acute respiratory failure. N Engl J Med. 1977;296(9):476–80.

    CAS  PubMed  Google Scholar 

  29. Permutt S, Bromberger-Barnea B, Bane HN. Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Med Thorac. 1962;19:239–60.

    CAS  Google Scholar 

  30. West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol. 1964;19:713–24.

    CAS  PubMed  Google Scholar 

  31. Linehan JH, Haworth ST, Nelin LD, Krenz GS, Dawson CA. A simple distensible vessel model for interpreting pulmonary vascular pressure-flow curves. J Appl Physiol (1985). 1992;73(3):987–94.

    CAS  Google Scholar 

  32. Naeije R, Vanderpool R, Dhakal BP, Saggar R, Saggar R, Vachiery JL, et al. Exercise-induced pulmonary hypertension: physiological basis and methodological concerns. Am J Respir Crit Care Med. 2013;187(6):576–83.

    PubMed  PubMed Central  Google Scholar 

  33. Naeije R, Vachiery JL, Yerly P, Vanderpool R. The transpulmonary pressure gradient for the diagnosis of pulmonary vascular disease. Eur Respir J. 2013;41(1):217–23.

    PubMed  Google Scholar 

  34. Gerges C, Gerges M, Lang MB, Zhang Y, Jakowitsch J, Probst P, et al. Diastolic pulmonary vascular pressure gradient: a predictor of prognosis in “out-of-proportion” pulmonary hypertension. Chest. 2013;143(3):758–66.

    PubMed  Google Scholar 

  35. Guazzi M, Naeije R. Pulmonary hypertension in heart failure: pathophysiology, pathobiology, and emerging clinical perspectives. J Am Coll Cardiol. 2017;69(13):1718–34.

    Google Scholar 

  36. Von Euler US, Liljestrand G. Observation of the pulmonary arterial pressure in the cat. Acta Physiol Scand. 1946;12:301–20.

    Google Scholar 

  37. Mothely HL, Cournand A, et al. The influence of short periods of induced acute anoxia upon pulmonary artery pressures in man. Am J Phys. 1947;150(2):315–20.

    Google Scholar 

  38. Nagasaka Y, Bhattacharya J, Nanjo S, Gropper MA, Staub NC. Micropuncture measurement of lung microvascular pressure profile during hypoxia in cats. Circ Res. 1984;54(1):90–5.

    CAS  PubMed  Google Scholar 

  39. Schwenke DO, Pearson JT, Umetani K, Kangawa K, Shirai M. Imaging of the pulmonary circulation in the closed-chest rat using synchrotron radiation microangiography. J Appl Physiol (1985). 2007;102(2):787–93. Epub 2006 Oct 12. Pubmed PMID: 17038493.

    Google Scholar 

  40. Dehnert C, Risse F, Ley S, Kuder TA, Buhmann R, Puderbach M, et al. Magnetic resonance imaging of uneven pulmonary perfusion in hypoxia in humans. Am J Respir Crit Care Med. 2006;174(10):1132–8.

    PubMed  Google Scholar 

  41. Stenmark KR, Tuder RM, El Kasmi KC. Metabolic reprogramming and inflammation act in concert to control vascular remodeling in hypoxic pulmonary hypertension. J Appl Physiol (1985). 2015;119(10):1164–72.

    CAS  Google Scholar 

  42. Dorrington KL, Clar C, Young JD, Jonas M, Tansley JG, Robbins PA. Time course of the human pulmonary vascular response to 8 hours of isocapnic hypoxia. Am J Phys. 1997;273(3 Pt 2):H1126–34.

    CAS  Google Scholar 

  43. Penaloza D, Arias-Stella J. The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness. Circulation. 2007;115(9):1132–46.

    PubMed  Google Scholar 

  44. Wilkins MR, Ghofrani HA, Weissmann N, Aldashev A, Zhao L. Pathophysiology and treatment of high-altitude pulmonary vascular disease. Circulation. 2015;131(6):582–90.

    PubMed  Google Scholar 

  45. Sylvester JT, Shimoda LA, Aaronson PI, Ward JP. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012;92(1):367–520.

    CAS  PubMed  Google Scholar 

  46. Sommer N, Strielkov I, Pak O, Weissmann N. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. Eur Respir J. 2016;47(1):288–303.

    CAS  PubMed  Google Scholar 

  47. Brimioulle S, Lejeune P, Naeije R. Effects of hypoxic pulmonary vasoconstriction on pulmonary gas exchange. J Appl Physiol (1985). 1996;81(4):1535–43.

    CAS  Google Scholar 

  48. Brimioulle S, Julien V, Gust R, Kozlowski JK, Naeije R, Schuster DP. Importance of hypoxic vasoconstriction in maintaining oxygenation during acute lung injury. Crit Care Med. 2002;30(4):874–80.

    PubMed  Google Scholar 

  49. Richard JC, Janier M, Lavenne F, Berthier V, Lebars D, Annat G, et al. Effect of position, nitric oxide, and almitrine on lung perfusion in a porcine model of acute lung injury. J Appl Physiol (1985). 2002;93(6):2181–91.

    CAS  Google Scholar 

  50. Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D42–50.

    PubMed  Google Scholar 

  51. Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. ESC Scientific Document Group. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37(1):67–119.

    Google Scholar 

  52. Hoeper MM, Humbert M, Souza R, Idrees M, Kawut SM, Sliwa-Hahnle K, et al. A global view of pulmonary hypertension. Lancet Respir Med. 2016;4(4):306–22.

    PubMed  Google Scholar 

  53. Kim NH, Delcroix M, Jenkins DP, Channick R, Dartevelle P, Jansa P, et al. Chronic thromboembolic pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D92–9.

    PubMed  Google Scholar 

  54. Jentzer JC, Mathier MA. Pulmonary hypertension in the intensive care unit. J Intensive Care Med. 2016;31(6):369–85.

    PubMed  Google Scholar 

  55. Teboul JL, Andrivet P, Ansquer M, Besbes M, Rekik N, Lemaire F, et al. A bedside index assessing the reliability of pulmonary occlusion pressure during mechanical ventilation with positive end-expiratory pressure. J Crit Care. 1992;7:22–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Maggiorini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 European Society of Intensive Care Medicine

About this chapter

Cite this chapter

Maggiorini, M. (2019). Pulmonary Circulation. In: Pinsky, M.R., Teboul, JL., Vincent, JL. (eds) Hemodynamic Monitoring. Lessons from the ICU. Springer, Cham. https://doi.org/10.1007/978-3-319-69269-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69269-2_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69268-5

  • Online ISBN: 978-3-319-69269-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics