Skip to main content

Oesophageal Doppler

  • Chapter
  • 3903 Accesses

Part of the book series: Lessons from the ICU ((LEICU))

Abstract

Central to the role of the intensivist is the maintenance of adequate organ perfusion to ensure sufficient oxygen delivery, thereby mitigating sequelae of oxygen deficit. There is a strong body of evidence underlining the importance of goal directed haemodynamic therapy in which interventions are manipulated to achieve predetermined flow-derived parameters. The oesophageal Doppler monitor (ODM) is a minimally invasive cardiac output monitor that provides continuous, real-time haemodynamic measurements and imaging of descending aortic blood flow. The ODM has been well validated against the established thermodilution technique and demonstrates good reliability. It has been pivotal in broadening the application of flow-based monitoring and its use has been associated with improved patient outcomes, principally in the perioperative setting. This chapter explores the scientific principles that underpin the ODM, its clinical applications, and the evidence supporting (or contesting) the use of this innovative clinical tool.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hamilton-Davies C, Mythen MG, Salmon JB, Jacobson D, Shukla A, Webb AR. Comparison of commonly used clinical indicators of hypovolaemia with gastrointestinal tonometry. Intensive Care Med. 1997;23:276–81.

    CAS  PubMed  Google Scholar 

  2. Dünser MW, Takala J, Brunauer A, Bakker J. Re-thinking resuscitation: leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach. Crit Care. 2013;17:326.

    PubMed  PubMed Central  Google Scholar 

  3. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest. 1988;94:1176–86.

    CAS  PubMed  Google Scholar 

  4. Boyd O, Grounds RM, Bennett ED. A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA. 1993;270:2699–707.

    CAS  PubMed  Google Scholar 

  5. Wilson J, Woods I, Fawcett J, Whall R, Dibb W, Morris C, McManus E. Reducing the risk of major elective surgery: randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ. 1999;318:1099–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lobo SM, Salgado PF, Castillo VG, Borim AA, Polachini CA, Palchetti JC, Brienzi SL, de Oliveira GG. Effects of maximizing oxygen delivery on morbidity and mortality in high-risk surgical patients. Crit Care Med. 2000;28:3396–404.

    CAS  PubMed  Google Scholar 

  7. Connors AF, Speroff T, Dawson NV, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA. 1996;276:889–97.

    PubMed  Google Scholar 

  8. Harvey S, Harrison DA, Singer M, et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet. 2005;366:472–7.

    PubMed  Google Scholar 

  9. Wiener RS, Welch HG. Trends in the use of the pulmonary artery catheter in the United States, 1993-2004. JAMA. 2007;298:423–9.

    CAS  PubMed  Google Scholar 

  10. Doppler C. Über das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels. Abh Königl Böhm Ges Wiss. 1843;2:465–82.

    Google Scholar 

  11. Coman I. Christian Andreas Doppler - the man and his legacy. Eur J Echocardiogr. 2005;6:7–10.

    CAS  PubMed  Google Scholar 

  12. Buys Ballot C. Akustische Versuche auf der Niederländischen Eisenbahn, nebst gelegentlichen Bemerkungen zur Theorie des Hrn. Prof Doppler Ann der Phys und Chemie. 1845;66:321–51.

    Google Scholar 

  13. Hoskins PR. Measurement of arterial blood flow by Doppler ultrasound. Clin Phys Physiol Meas. 1990;11:1–26.

    CAS  PubMed  Google Scholar 

  14. Thrush A. Spectral Doppler ultrasound. In: Hoskins PR, Martin K, Thrush A, editors. Diagnostic ultrasound. 2nd ed. Cambridge: Cambridge University Press; 2010. p. 114–5.

    Google Scholar 

  15. Light LH. Non-injurious ultrasonic technique for observing flow in the human aorta. Nature. 1969;224:1119–21.

    CAS  PubMed  Google Scholar 

  16. Huntsman LL, Gams E, Johnson CC, Fairbanks E. Transcutaneous determination of aortic blood-flow velocities in man. Am Heart J. 1975;89:605–12.

    CAS  PubMed  Google Scholar 

  17. Benchimol A, Stegall HF, Maroko PR, Gartlan JL, Leib B. Aortic flow velocity in man during cardiac arrhythmias measured with the Doppler catheter-flowmeter system. Am Heart J. 1969;78:649–59.

    CAS  PubMed  Google Scholar 

  18. Benchimol A, Desser KB, Gartlan JL. Bidirectional blood flow velocity in the cardiac chambers and great vessels studied with the Doppler ultrasonic flowmeter. Am J Med. 1972;52:467–73.

    CAS  PubMed  Google Scholar 

  19. Side CD, Gosling RG. Non-surgical assessment of cardiac function. Nature. 1971;232:335–6.

    CAS  PubMed  Google Scholar 

  20. Duck FA, Hodson CJ, Tomlin PJ. An esophageal Doppler probe for aortic flow velocity monitoring. Ultrasound Med Biol. 1974;1:233–41.

    CAS  PubMed  Google Scholar 

  21. Olson RM, Cooke JP. A nondestructive ultrasonic technique to measure diameter and blood flow in arteries. IEEE Trans Biomed Eng. 1974;BME-21:168–71.

    Google Scholar 

  22. Lavandier B, Cathignol D, Muchada R, Bui Xuan B, Motin J. Noninvasive aortic blood flow measurement using an intraesophageal probe. Ultrasound Med Biol. 1985;11:451–60.

    CAS  PubMed  Google Scholar 

  23. Singer M, Clarke J, Bennett ED. Continuous hemodynamic monitoring by esophageal Doppler. Crit Care Med. 1989;17:447–52.

    CAS  PubMed  Google Scholar 

  24. Singer M, Bennett ED. Noninvasive optimization of left ventricular filling using esophageal Doppler. Crit Care Med. 1991;19:1132–7.

    CAS  PubMed  Google Scholar 

  25. DiCorte CJ, Latham P, Greilich PE, Cooley MV, Grayburn PA, Jessen ME. Esophageal Doppler monitor determinations of cardiac output and preload during cardiac operations. Ann Thorac Surg. 2000;69:1782–6.

    CAS  PubMed  Google Scholar 

  26. Madan AK, UyBarreta VV, Aliabadi-Wahle S, Jesperson R, Hartz RS, Flint LM, Steinberg SM. Esophageal Doppler ultrasound monitor versus pulmonary artery catheter in the hemodynamic management of critically ill surgical patients. J Trauma. 1999;46:607–11–2.

    Google Scholar 

  27. Monnet X, Chemla D, Osman D, Anguel N, Richard C, Pinsky MR, Teboul J-L. Measuring aortic diameter improves accuracy of esophageal Doppler in assessing fluid responsiveness. Crit Care Med. 2007;35:477–82.

    PubMed  Google Scholar 

  28. Mark JB, Steinbrook RA, Gugino LD, Maddi R, Hartwell B, Shemin R, DiSesa V, Rida WN. Continuous noninvasive monitoring of cardiac output with esophageal Doppler ultrasound during cardiac surgery. Anesth Analg. 1986;65:1013–20.

    CAS  PubMed  Google Scholar 

  29. Penny JA, Anthony J, Shennan AH, de Swiet M, Singer M. A comparison of hemodynamic data derived by pulmonary artery flotation catheter and the esophageal Doppler monitor in preeclampsia. Am J Obstet Gynecol. 2000;183:658–61.

    CAS  PubMed  Google Scholar 

  30. Leather HA, Wouters PF. Oesophageal Doppler monitoring overestimates cardiac output during lumbar epidural anaesthesia. Br J Anaesth. 2001;86:794–7.

    CAS  PubMed  Google Scholar 

  31. Papavramidis T, Pliakos I, Papavramidou N, Marinis A, Kesisoglou I. Abdominal compartment syndrome – intra-abdominal hypertension: defining, diagnosing, and managing. J Emerg Trauma Shock. 2011;4:279.

    PubMed  PubMed Central  Google Scholar 

  32. Odeberg-Wernerman S. Laparoscopic surgery – effects on circulatory and respiratory physiology: an overview. Eur J Surg. 2000;166:4–11.

    Google Scholar 

  33. Robotham JL, Wise RA, Bromberger-Barnea B. Effects of changes in abdominal pressure on left ventricular performance and regional blood flow. Crit Care Med. 1985;13:803–9.

    CAS  PubMed  Google Scholar 

  34. Reuter DA, Goresch T, Goepfert MSG, Wildhirt SM, Kilger E, Goetz AE. Effects of mid-line thoracotomy on the interaction between mechanical ventilation and cardiac filling during cardiac surgery. Br J Anaesth. 2004;92:808–13.

    CAS  PubMed  Google Scholar 

  35. van Lavieren M, Veelenturf J, Hofhuizen C, van der Kolk M, van der Hoeven J, Pickkers P, Lemson J, Lansdorp B. Dynamic preload indicators decrease when the abdomen is opened. BMC Anesthesiol. 2014;14:90.

    PubMed  PubMed Central  Google Scholar 

  36. Jacques D, Bendjelid K, Duperret S, Colling J, Piriou V, Viale J-P. Pulse pressure variation and stroke volume variation during increased intra-abdominal pressure: an experimental study. Crit Care. 2011;15:R33.

    PubMed  PubMed Central  Google Scholar 

  37. Wyffels PAH, Sergeant P, Wouters PF. The value of pulse pressure and stroke volume variation as predictors of fluid responsiveness during open chest surgery. Anaesthesia. 2010;65:704–9.

    CAS  PubMed  Google Scholar 

  38. Koliopanos A, Zografos G, Skiathitis S, Stithos D, Voukena V, Karampinis A, Papastratis G. Esophageal Doppler (ODM II) improves intraoperative hemodynamic monitoring during laparoscopic surgery. Surg Laparosc Endosc Percutan Tech. 2005;15:332–8.

    PubMed  Google Scholar 

  39. Zhang J, Critchley LAH, Huang L. The effect of aorta unfolding and remodelling on oesophageal Doppler readings as probe depth is varied. Br J Anaesth. 2015;115:708–15.

    CAS  PubMed  Google Scholar 

  40. Dark PM, Singer M. The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med. 2004;30:2060–6.

    PubMed  Google Scholar 

  41. Mythen MG, Webb AR. Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg. 1995;130:423–9.

    CAS  PubMed  Google Scholar 

  42. Abbas SM, Hill AG. Systematic review of the literature for the use of oesophageal Doppler monitor for fluid replacement in major abdominal surgery. Anaesthesia. 2007;63:44–51.

    Google Scholar 

  43. Walsh SR, Tang T, Bass S, Gaunt ME. Doppler-guided intra-operative fluid management during major abdominal surgery: systematic review and meta-analysis. Int J Clin Pract. 2007;62:466–70.

    PubMed  Google Scholar 

  44. Sinclair S, James S, Singer M. Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ. 1997;315:909–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Venn R, Steele A, Richardson P, Poloniecki J, Grounds M, Newman P. Randomized controlled trial to investigate influence of the fluid challenge on duration of hospital stay and perioperative morbidity in patients with hip fractures. Br J Anaesth. 2002;88:65–71.

    CAS  PubMed  Google Scholar 

  46. Gan TJ, Soppitt A, Maroof M, El-Moalem H, Robertson KM, Moretti E, Dwane P, Glass PSA. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97:820–6.

    PubMed  Google Scholar 

  47. Conway DH, Mayall R, Abdul-Latif MS, Gilligan S, Tackaberry C. Randomised controlled trial investigating the influence of intravenous fluid titration using oesophageal Doppler monitoring during bowel surgery. Anaesthesia. 2002;57:845–9.

    CAS  PubMed  Google Scholar 

  48. Wakeling HG, McFall MR, Jenkins CS, Woods WGA, Miles WFA, Barclay GR, Fleming SC. Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth. 2005;95:634–42.

    CAS  PubMed  Google Scholar 

  49. Noblett SE, Snowden CP, Shenton BK, Horgan AF. Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection. Br J Surg. 2006;93:1069–76.

    CAS  PubMed  Google Scholar 

  50. Zakhaleva J, Tam J, Denoya PI, Bishawi M, Bergamaschi R. The impact of intravenous fluid administration on complication rates in bowel surgery within an enhanced recovery protocol: a randomized controlled trial. Color Dis. 2013;15:892–9.

    CAS  Google Scholar 

  51. El Sharkawy OA, Refaat EK, Ibraheem AEM, Mahdy WR, Fayed NA, Mourad WS, Abd Elhafez HS, Yassen KA. Transoesophageal Doppler compared to central venous pressure for perioperative hemodynamic monitoring and fluid guidance in liver resection. Saudi J Anaesth. 2013;7:378–86.

    PubMed  PubMed Central  Google Scholar 

  52. Picard J, Bedague D, Bouzat P, Ollinet C, Albaladejo P, Bosson J-L, Payen J-F. Oesophageal Doppler to optimize intraoperative haemodynamics during prone position. A randomized controlled trial. Anaesth Crit Care Pain Med. 2016;35:255–60.

    PubMed  Google Scholar 

  53. Kaufmann KB, Stein L, Bogatyreva L, Ulbrich F, Kaifi JT, Hauschke D, Loop T, Goebel U. Oesophageal Doppler guided goal-directed haemodynamic therapy in thoracic surgery – a single centre randomized parallel-arm trial. BJA Br J Anaesth. 2017;118:852–61.

    CAS  PubMed  Google Scholar 

  54. Haxby EJ, Gray MR, Rodriguez C, Nott D, Springall M, Mythen M. Assessment of cardiovascular changes during laparoscopic hernia repair using oesophageal Doppler. Br J Anaesth. 1997;78:515–9.

    CAS  PubMed  Google Scholar 

  55. McKendry M, McGloin H, Saberi D, Caudwell L, Brady AR, Singer M. Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. BMJ. 2004;329:258.

    PubMed  PubMed Central  Google Scholar 

  56. Chytra I, Pradl R, Bosman R, Pelnár P, Kasal E, Zidková A. Esophageal Doppler-guided fluid management decreases blood lactate levels in multiple-trauma patients: a randomized controlled trial. Crit Care. 2007;11:R24.

    PubMed  PubMed Central  Google Scholar 

  57. Poeze M, Ramsay G, Greve JW, Singer M. Prediction of postoperative cardiac surgical morbidity and organ failure within 4 hours of intensive care unit admission using esophageal Doppler ultrasonography. Crit Care Med. 1999;27:1288–94.

    CAS  PubMed  Google Scholar 

  58. Srinivasa S, Taylor MHG, Sammour T, Kahokehr AA, Hill AG. Oesophageal Doppler-guided fluid administration in colorectal surgery: critical appraisal of published clinical trials. Acta Anaesthesiol Scand. 2011;55:4–13.

    CAS  PubMed  Google Scholar 

  59. Challand C, Struthers R, Sneyd JR, Erasmus PD, Mellor N, Hosie KB, Minto G. Randomized controlled trial of intraoperative goal-directed fluid therapy in aerobically fit and unfit patients having major colorectal surgery. BJA Br J Anaesth. 2012;108:53–62.

    CAS  PubMed  Google Scholar 

  60. McKenny M, Conroy P, Wong A, Farren M, Gleeson N, Walsh C, O’Malley C, Dowd N. A randomised prospective trial of intra-operative oesophageal Doppler-guided fluid administration in major gynaecological surgery. Anaesthesia. 2013;68:1224–31.

    CAS  PubMed  Google Scholar 

  61. Brandstrup B, Svendsen PE, Rasmussen M, et al. Which goal for fluid therapy during colorectal surgery is followed by the best outcome: near-maximal stroke volume or zero fluid balance? BJA Br J Anaesth. 2012;109:191–9.

    CAS  PubMed  Google Scholar 

  62. Srinivasa S, Taylor MHG, Singh PP, Yu T-C, Soop M, Hill AG. Randomized clinical trial of goal-directed fluid therapy within an enhanced recovery protocol for elective colectomy. Br J Surg. 2013;100:66–74.

    CAS  PubMed  Google Scholar 

  63. Phan TD, D’Souza B, Rattray MJ, Johnston MJ, Cowie BS. A randomised controlled trial of fluid restriction compared to oesophageal Doppler-guided goal-directed fluid therapy in elective major colorectal surgery within an Enhanced Recovery After Surgery program. Anaesth Intensive Care. 2014;42:752–60.

    CAS  PubMed  Google Scholar 

  64. Srinivasa S, Lemanu DP, Singh PP, Taylor MHG, Hill AG. Systematic review and meta-analysis of oesophageal Doppler-guided fluid management in colorectal surgery. Br J Surg. 2013;100:1701–8.

    CAS  PubMed  Google Scholar 

  65. Mowatt G, Houston G, Hernández R, de Verteuil R, Fraser C, Cuthbertson B, Vale L. Systematic review of the clinical effectiveness and cost-effectiveness of oesophageal Doppler monitoring in critically ill and high-risk surgical patients. Health Technol Assess (Rockv). 2009;13:iii–iv, ix–xii, 1–95.

    Google Scholar 

  66. Bundgaard-Nielsen M, Holte K, Secher NH, Kehlet H. Monitoring of peri-operative fluid administration by individualized goal-directed therapy. Acta Anaesthesiol Scand. 2007;51:331–40.

    CAS  PubMed  Google Scholar 

  67. Cecconi M, Corredor C, Arulkumaran N, Abuella G, Ball J, Grounds RM, Hamilton M, Rhodes A. Clinical review: goal-directed therapy-what is the evidence in surgical patients? The effect on different risk groups. Crit Care. 2013;17:209.

    PubMed  PubMed Central  Google Scholar 

  68. Grocott MPW, Dushianthan A, Hamilton MA, Mythen MG, Harrison D, Rowan K. Perioperative increase in global blood flow to explicit defined goals and outcomes after surgery: a Cochrane systematic review. Br J Anaesth. 2013;111:535–48.

    CAS  PubMed  Google Scholar 

  69. Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112:1392–402.

    PubMed  Google Scholar 

  70. Morris C. Oesophageal Doppler monitoring, doubt and equipoise: evidence based medicine means change. Anaesthesia. 2013;68:684–8.

    CAS  PubMed  Google Scholar 

Additional Resources

  • The Deltex Medical website (http://www.deltexmedical.com/) provides excellent educational training resources for the use and interpretation of CardioQ-ODM monitors.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monty Mythen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 European Society of Intensive Care Medicine

About this chapter

Cite this chapter

Lacey, J., Mythen, M. (2019). Oesophageal Doppler. In: Pinsky, M.R., Teboul, JL., Vincent, JL. (eds) Hemodynamic Monitoring. Lessons from the ICU. Springer, Cham. https://doi.org/10.1007/978-3-319-69269-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69269-2_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69268-5

  • Online ISBN: 978-3-319-69269-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics