Advertisement

Some Properties of Gyrostats Dynamical Regimes Close to New Strange Attractors of the Newton-Leipnik Type

  • Anton V. Doroshin
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 751)

Abstract

New dynamical systems with strange attractors are numerically investigated in the article. These dynamical systems correspond to the main mathematical model describing the attitude dynamics of multi-spin spacecraft and gyrostat-satellites. The considering dynamical systems are structurally related to the well-known Newton-Leipnik system. Properties of the strange attractors arising inside the phase spaces of the dynamical systems are examined with the help of the numerical modelling.

Notes

Acknowledgements

This work is partially supported by the Russian Foundation for Basic Research (RFBR#15-08-05934-A), and by the Ministry of education and science of the Russian Federation in the framework of the State Assignments to higher education institutions and research organizations in the field of scientific activity (the project # 9.1616.2017/ПЧ).

References

  1. 1.
    Doroshin, A.V.: New strange chaotic attractors in dynamical systems of multi-spin spacecraft and gyrostats. In: SAI Intelligent Systems Conference (IntelliSys-2016) (2016)Google Scholar
  2. 2.
    Doroshin, A.V.: Modeling of chaotic motion of gyrostats in resistant environment on the base of dynamical systems with strange attractors. Commun. Nonlinear Sci. Numer. Simul. 16(8), 3188–3202 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Doroshin, A.V.: Initiations of chaotic regimes of attitude dynamics of multi-spin spacecraft and gyrostat-satellites basing on multiscroll strange chaotic attractors. In: SAI Intelligent Systems Conference (IntelliSys), London, U.K., pp. 698–704 (2015)Google Scholar
  4. 4.
    Doroshin, A.V.: Multi-spin spacecraft and gyrostats as dynamical systems with multiscroll chaotic attractors. In: Science and Information Conference (SAI), London, U.K., pp. 882–887 (2014)Google Scholar
  5. 5.
    Doroshin, A.V.: Initiations of chaotic motions as a method of spacecraft attitude control and reorientations. In: IAENG Transactions on Engineering Sciences, pp. 15–28 (2016)Google Scholar
  6. 6.
    Leipnik, R.B., Newton, T.A.: Double strange attractors in rigid body motion with linear feedback control. Phys. Lett. A 86, 63–67 (1981)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jafari, S., Sprott, J.C., Nazarimehr, F.: Recent New Examples of Hidden Attractors. The European Physical Journal Special Topics 224, 1469–1476 (2015)CrossRefGoogle Scholar
  8. 8.
    Elhadj, Z., Sprott, J.C.: Simplest 3D continuous-time quadratic systems as candidates for generating multiscroll chaotic attractors. Int. J. Bifurcat. Chaos 23(7) (2013)Google Scholar
  9. 9.
    Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50 (1994)Google Scholar
  10. 10.
    Sprott, J.C.: Simplest dissipative chaotic flow. Phys. Lett. A 228, 271–274 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Wang, Z., Sun, Y., van Wyk, B.J., Qi, G., van Wyk, M.A.: A 3-D four-wing attractor and its analysis. Braz. J. Phys. 39, 547–553 (2009)CrossRefGoogle Scholar
  12. 12.
    Chen, H.K., Lee, C.I.: Anti-control of chaos in rigid body motion. Chaos, Solitons Fractals 21, 957–965 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Sheu, L.J., Chen, H.K., Chen, J.H., Tam, L.M., Chen, W.C., Lin, K.T., Kang, Y.: Chaos in the Newton-Leipnik system with fractional order. Chaos, Solitons Fractals 36(1), 98–103 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wang, X., Tian, L.: Bifurcation analysis and linear control of the Newton-Leipnik system. Chaos, Solitons Fractals 27(1), 31–38 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jia, Q.: Chaos control and synchronization of the Newton-Leipnik chaotic system. Chaos, Solitons Fractals 35(4), 814–824 (2008)CrossRefGoogle Scholar
  16. 16.
    Zhang, K., Wang, H., Fang, H.: Feedback control and hybrid projective synchronization of a fractional-order Newton-Leipnik system. Commun. Nonlinear Sci. Numer. Simul. 17(1), 317–328 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Richter, H.: Controlling chaotic systems with multiple strange attractors. Phys. Lett. A 300(2), 182–188 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Yun-Zhong, S., Guang-Zhou, Z., Dong-Lian, Q.: Passive control of chaotic system with multiple strange attractors. Chin. Phys. 15(10), 2266 (2006)CrossRefGoogle Scholar
  19. 19.
    Marlin, B.A.: Periodic orbits in the Newton-Leipnik system. International Journal of Bifurcation and Chaos 12(03), 511–523 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Space Engineering Department (Division of Flight Dynamics and Control Systems)Samara National Research UniversitySamaraRussia

Personalised recommendations