Skip to main content

Miscellaneous Topics

  • Chapter
  • First Online:
Skyrmions in Condensed Matter

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 278))

  • 2062 Accesses

Abstract

This chapter deals with a number of themes that are useful to know, but which are not necessarily correlated with one another. Some of these topics are concerned with exploring the technological potential of “engineering” skyrmions through nucleation and tunneling processes. Several physical mechanisms capable of nucleating individual skyrmions are considered, ranging from electrical currents to optical beams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this section, we use \(\alpha , \beta \) to refer to spacetime indices, and \(\mu , \nu , \lambda \) to refer to space indices.

  2. 2.

    We write the time derivative as \(\partial _0\), \(\partial _t\), or with a dot over the object such as \(\dot{\mathbf{n}}\), as the aesthetics of the equation at hand dictates. The temporal component of the tensor will be denoted by 0 or t.

  3. 3.

    The modification of the continuity equation for the topological density to include electronic coupling does not appear to have been discussed in the literature. The author derived the following modified continuity equation during the writing of this book and bears sole responsibility for its validity.

  4. 4.

    The tunneling calculations presented here were done in collaboration with Sang-Jin Lee and Eun-Gook Moon.

References

  1. Schütte, C., Garst, M.: Magnon-skyrmion scattering in chiral magnets. Phys. Rev. B 90, 094423 (2014)

    Article  ADS  Google Scholar 

  2. Sampaio, J., Cros, V., Rohart, S., Thiaville, A., Fert, A.: Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotech. 8, 839 (2013)

    Article  ADS  Google Scholar 

  3. Zhou, Y., Iacocca, E., Awad, A.A., Dumas, R.K., Zhang, F.C., Braun, H.B., Åkerman, J.: Dynamically stabilized magnetic skyrmions. Nat. Commun. 6, 8193 (2015). doi:10.1038/ncomms9193

    Article  ADS  Google Scholar 

  4. Yin, G., Li, Y., Kong, L., Lake, R.K., Chien, C.L., Zang, J.: Topological charge analysis of ultrafast single skyrmion creation. Phys. Rev. B 93, 174403 (2016)

    Article  ADS  Google Scholar 

  5. Yuan, H.Y., Wang, X.R.: Skyrmion creation and manipulation by nano-second current pulses. Sci. Rep. 6, 22638 (2016). doi:10.1038/srep22638

    Article  ADS  Google Scholar 

  6. Tchoe, Y., Han, J.H.: Skyrmion generation by current. Phys. Rev. B 85, 174416 (2012)

    Article  ADS  Google Scholar 

  7. Iwasaki, J., Mochizuki, M., Nagaosa, N.: Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 8, 742 (2013). doi:10.1038/nnano.2013.176

    Article  ADS  Google Scholar 

  8. Jiang, W., Upadhyaya, P., Zhang, W., Yu, G., Jungfleisch, M.B., Fradkin, F.Y., Pearson, J.E., Tserkovnyak, Y., Wang, K.L., Heinonen, O., te Velthuis, S.G.E., Hoffmann, A.: Blowing magnetic skyrmion bubbles. Science 349, 283 (2015)

    Article  ADS  Google Scholar 

  9. Woo, S., Litzius, K., Krüger, B., Im, M.Y., Caretta, L., Richter, K., Mann, M., Krone, A., Reeve, R.M., Weigand, M., Agrawal, P., Lemesh, I., Mawass, M.A., Fischer, P., Kläui, M., Beach, G.S.D.: Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501 (2016). doi:10.1038/nmat4593

    Article  ADS  Google Scholar 

  10. Yu, X., Morikawa, D., Tokunaga, Y., Kubota, M., Kurumaji, T., Oike, H., Nakamura, M., Kagawa, F., Taguchi, Y., Arima, T., Kawasaki, M., Tokura, Y.: Current-induced nucleation and annihilation of magnetic skyrmions at room temperature in a chiral magnet. Adv. Mater. 29, 1606178 (2017). doi:10.1002/adma.201606178

    Article  Google Scholar 

  11. Fujita, H., Sato, M.: Encoding orbital angular momentum of lights in magnets. arXiv:1612.00176 (2016)

  12. Romming, N., Hanneken, C., Menzel, M., Bickel, J.E., Wolter, B., Bergmann, K.V., Kubetzka, A., Wiesendanger, R.: Writing and deleting single magnetic skyrmions. Science 341, 636 (2013)

    Google Scholar 

  13. Diaz, S.A., Arovas, D.P.: Quantum nucleation of skyrmions in magnetic films by inhomogeneous fields. arXiv:1604.0401 (2016)

  14. Ao, P., Thouless, D.J.: Tunneling of a quantized vortex: roles of pinning and dissipation. Phys. Rev. Lett. 72, 132 (1994)

    Article  ADS  Google Scholar 

  15. Seki, S., Ishiwata, S., Tokura, Y.: Magnetoelectric nature of skyrmions in a chiral magnetic insulator Cu\(_2\)OSeO\(_3\). Phys. Rev. B 86, 060403(R) (2012)

    Article  ADS  Google Scholar 

  16. Liu, Y.H., Li, Y.Q., Han, J.H.: Skyrmion dynamics in multiferroic insulators. Phys. Rev. B 87, 100402(R) (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Hoon Han .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Han, J.H. (2017). Miscellaneous Topics. In: Skyrmions in Condensed Matter. Springer Tracts in Modern Physics, vol 278. Springer, Cham. https://doi.org/10.1007/978-3-319-69246-3_7

Download citation

Publish with us

Policies and ethics