Advertisement

Feedback Routing via Congestion Pricing

  • Pushkin Kachroo
  • Kaan M. A. Özbay
Chapter
Part of the Advances in Industrial Control book series (AIC)

Abstract

This chapter addresses a control design for performing dynamic congestion pricing as a method to perform traffic assignment to achieve certain objective. The design uses the methodology of optimal control theory. The formulation allows for modeling tolled and non-tolled lanes or routes. A logit model connects the toll price with the driver choice behavior. A feedback optimal tolling control law is designed based on deriving the corresponding Hamilton–Jacobi–Bellman equation for the model of the system. Simulations are also presented to illustrate the working of the control design. Some of the content of this chapter has been adapted from the following paper: \(\copyright \) 2016 IEEE. Reprinted, with permission, from: Kachroo P, Gupta S, Agarwal S, Özbay K., “Optimal Control for Congestion Pricing: Theory, Simulation, and Evaluation,” IEEE Transactions on Intelligent Transportation Systems. 2017 May; 18(5):1234–40.

References

  1. 1.
    Kachroo P, Ozbay K, Shlayan N, Wadoo SA (2011) Feedback based dynamic congestion pricing. In: Proceedings of the 90th Annual Meeting of the Transportation Research Board, Washington, DCGoogle Scholar
  2. 2.
    Kachroo P, Gupta S, Agarwal S, Ozbay K (2017) Optimal control for congestion pricing: theory, simulation, and evaluation. IEEE Trans Intell Transp Syst 18(5):1234–1240CrossRefGoogle Scholar
  3. 3.
    Tsekeris T, Voß S (2009) Design and evaluation of road pricing: state-of-the-art and methodological advances. NETNOMICS: Econ Res Electron Networking 10(1):5–52CrossRefGoogle Scholar
  4. 4.
    Yang H, Zhang X, Huang H-J (2002) Determination of optimal toll levels and toll locations of alternative congestion pricing schemes. In: Proceedings of the 15th international symposium on transportation and traffic theory (ISTTT) Adelaide, Australia, 2002. Emerald Group Publishing Limited, pp 519–540CrossRefGoogle Scholar
  5. 5.
    Verhoef ET (2002) Second-best congestion pricing in general networks: heuristic algorithms for finding second-best optimal toll levels and toll points. Transp Res Part B: Methodol 36:707–729CrossRefGoogle Scholar
  6. 6.
    Hearn DW, Ramana MV (1998) Solving congestion Toll Pricing Models. In: Equilibrium and advanced transportation modeling. Springer, pp 109–124CrossRefGoogle Scholar
  7. 7.
    Lindsey R (2003) Road pricing issues and experiences in the US and Canada. In: Europe fourth seminar implementing pricing policies in transport, Katholieke University of Leuven, Belguim, May 2003Google Scholar
  8. 8.
    Odeck J, Brathen S (2002) Toll financing in Norway: the success, the failures and perspectives for the future. Transp Policy 9:253–260CrossRefGoogle Scholar
  9. 9.
    Goh M (2002) Congestion management and electronic road pricing in Singapore. J Transp Geogr 10(1):29–38CrossRefGoogle Scholar
  10. 10.
    Litman T (2004) London congestion pricing implications for other cities. Victoria Transport Policy Institute (VTPI), page available on July 2009 at http://www.vtpi.org/london.pdf
  11. 11.
    Meng Q, Liu Z, Wang S (2012) Optimal distance tolls under congestion pricing and continuously distributed value of time. Transp Res Part E: Logistics Transp Rev 48(5):937–957CrossRefGoogle Scholar
  12. 12.
    Wie B-W, Tobin RL (1998) Dynamic congestion pricing models for general traffic networks. Transp Res Part B: Methodol 32(5):313–327CrossRefGoogle Scholar
  13. 13.
    Friesz TL, Bernstein D, Kydes N (2004) Dynamic congestion pricing in disequilibrium. Networks Spat Econ 4(2):181–202CrossRefGoogle Scholar
  14. 14.
    Yang H (1999) Evaluating the benefits of a combined route guidance and road pricing system in a traffic network with recurrent congestion. Transportation 26(3):299–322CrossRefGoogle Scholar
  15. 15.
    Yang H, Meng Q, Lee D-H (2004) Trial-and-error implementation of marginal-cost pricing on networks in the absence of demand functions. Transp Res Part B: Methodol 38(6):477–493CrossRefGoogle Scholar
  16. 16.
    Zhao Y, Kockelman KM (2006) On-line marginal-cost pricing across networks: incorporating heterogeneous users and stochastic equilibria. Transp Res Part B: Methodol 40(5):424–435CrossRefGoogle Scholar
  17. 17.
    Wie B-W (2007) Dynamic stackelberg equilibrium congestion pricing. Transp Res Part C: Emerg Technol 15(3):154–174CrossRefGoogle Scholar
  18. 18.
    Joksimovic D, Bliemer MC, Bovy PH, Verwater-Lukszo Z (2005) Dynamic road pricing for optimizing network performance with heterogeneous users. In: Networking, Sensing and Control, 2005. IEEE, pp 407–412Google Scholar
  19. 19.
    Dimitriou L, Tsekeris T (2009) Evolutionary game-theoretic model for dynamic congestion pricing in multi-class traffic networks. Netnomics 10(1):103–121CrossRefGoogle Scholar
  20. 20.
    Hårsman B, Quigley JM (2010) Political and public acceptability of congestion pricing: ideology and self-interest. J Policy Anal Manage 29(4):854–874CrossRefGoogle Scholar
  21. 21.
    de Palma A, Lindsey R (2011) Traffic congestion pricing methodologies and technologies. Transp Res Part C: Emerg Technol 19(6):1377–1399CrossRefGoogle Scholar
  22. 22.
    Vidyasagar M (2002) Nonlinear systems analysis. SIAMGoogle Scholar
  23. 23.
    Khalil HK (1996) Nonlinear systems, vol 2. Prentice Hall, New JerseyGoogle Scholar
  24. 24.
    Kirk DE (2004) Optimal control theory: an introduction. Dover PublicationsGoogle Scholar
  25. 25.
    Kachroo P, Tomizuka M (1996) Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems. IEEE Trans Autom Control 41(7):1063–1068MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kachroo P (1999) Existence of solutions to a class of nonlinear convergent chattering-free sliding mode control systems. IEEE Trans Autom Control 44(8):1620–1624MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kachroo P, Masayoshi T (1992) Integral action for chattering reduction and error convergence in sliding mode control. In: American Control Conference, 1992. IEEE, pp 867–870Google Scholar
  28. 28.
    Lee H, Utkin VI (2007) Chattering suppression methods in sliding mode control systems. Annu Rev Control 31(2):179–188CrossRefGoogle Scholar
  29. 29.
    Fridman L, Levant A (2002) Higher order sliding modes. Sliding Mode Control Eng 11:53–102Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of NevadaLas VegasUSA
  2. 2.Department of Civil and Urban EngineeringNew York UniversityBrooklynUSA

Personalised recommendations