Skip to main content

Cumulative VRP: A Simplified Model of Green Vehicle Routing

Part of the Springer Optimization and Its Applications book series (SOIA,volume 129)

Abstract

There has been a recent resurge of interest in vehicle routing problems, especially in the context of green vehicle routing. One popular and simplified model is that of the cumulative vehicle routing problem. In this chapter, we examine the motivation, the definition, and the mixed integer linear program for the cumulative VRP. We review some of the recent results on approximation algorithms for the cumulative VRP. A column generation-based procedure for solving the cumulative VRP is also described. We also review approximation algorithms for a stochastic version of the cumulative VRP.

Keywords

  • Vehicle Routing Problem (VRPs)
  • Mixed Integer Linear Programming (MILP)
  • Capacitated VRPs
  • VRPs With Stochastic Demands
  • Subtour

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-69215-9_3
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-69215-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.00
Price excludes VAT (USA)
Hardcover Book
USD   119.00
Price excludes VAT (USA)

References

  1. Altinkemer, K., Gavish, B.: Heuristics for unequal weight delivery problems with a fixed error guarantee. Oper. Res. Lett. 6(4), 149–158 (1987)

    MathSciNet  CrossRef  MATH  Google Scholar 

  2. Archetti, C., Feillet, D., Gendreau, M., Speranza, M.G.: Complexity of the VRP and SDVRP. Transp. Res. C Emerg. Technol. 19(5), 741–750 (2011)

    CrossRef  Google Scholar 

  3. Baldacci, R., Christofides, N., Mingozzi, A.: An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts. Math. Program. 115(2), 351–385 (2008)

    MathSciNet  CrossRef  MATH  Google Scholar 

  4. Beasley, J.E.: Route firstcluster second methods for vehicle routing. Omega 11(4), 403–408 (1983)

    CrossRef  Google Scholar 

  5. Bektaş, T., Demir, E., Laporte, G.: Green vehicle routing. In: Psaraftis, H.N. (ed.) Green Transportation Logistics, pp. 243–265. Springer, Cham (2016)

    CrossRef  Google Scholar 

  6. Bell, J.E., McMullen, P.R.: Ant colony optimization techniques for the vehicle routing problem. Adv. Eng. Inform. 18(1), 41–48 (2004)

    CrossRef  Google Scholar 

  7. Bertsimas, D.: Probabilistic combinatorial optimization problems. Ph.D. thesis, Massachusetts Institute of Technology (1988)

    Google Scholar 

  8. Bertsimas, D.J.: A vehicle routing problem with stochastic demand. Oper. Res. 40(3), 574–585 (1992)

    MathSciNet  CrossRef  MATH  Google Scholar 

  9. Bertsimas, D.J., Simchi-Levi, D.: A new generation of vehicle routing research: robust algorithms, addressing uncertainty. Oper. Res. 44(2), 286–304 (1996)

    CrossRef  MATH  Google Scholar 

  10. Bjarnadóttir, Á.S.: Solving the vehicle routing problem with genetic algorithms. Ph.D. thesis, Technical University of Denmark (DTU), Lyngby (2004)

    Google Scholar 

  11. Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., Sudan, M.: The minimum latency problem. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, pp. 163–171. ACM (1994)

    Google Scholar 

  12. Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions. Discrete Optim. 3(4), 299–316 (2006)

    MathSciNet  CrossRef  MATH  Google Scholar 

  13. Bramel, J., Simchi-Levi, D.: Probabilistic analyses and practical algorithms for the vehicle routing problem with time windows. Oper. Res. 44(3), 501–509 (1996)

    CrossRef  MATH  Google Scholar 

  14. Chaudhuri, K., Godfrey, B., Rao, S., Talwar, K.: Paths, trees, and minimum latency tours. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 36–45. IEEE, Los Alamitos (2003)

    Google Scholar 

  15. Chiang, W.C., Russell, R.A.: Simulated annealing metaheuristics for the vehicle routing problem with time windows. Ann. Oper. Res. 63(1), 3–27 (1996)

    CrossRef  MATH  Google Scholar 

  16. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, DTIC Document (1976)

    Google Scholar 

  17. Christofides, N., Mingozzi, A., Toth, P.: State-space relaxation procedures for the computation of bounds to routing problems. Networks 11(2), 145–164 (1981)

    MathSciNet  CrossRef  MATH  Google Scholar 

  18. Cinar, D., Gakis, K., Pardalos, P.M.: Reduction of CO2 emissions in cumulative multi-trip vehicle routing problems with limited duration. Environ. Model. Assess. 20(4), 273–284 (2015)

    CrossRef  Google Scholar 

  19. Cinar, D., Gakis, K., Pardalos, P.M.: A 2-phase constructive algorithm for cumulative vehicle routing problems with limited duration. Expert Syst. Appl. 56, 48–58 (2016)

    CrossRef  Google Scholar 

  20. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12(4), 568–581 (1964)

    CrossRef  Google Scholar 

  21. Cordeau, J.F., Laporte, G.: Tabu search heuristics for the vehicle routing problem. In: Sharda, R., Alidaee, B., Rego, C., Voß, S. (eds.) Metaheuristic Optimization via Memory and Evolution, pp. 145–163. Springer, Boston (2005)

    CrossRef  Google Scholar 

  22. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6(1), 80–91 (1959)

    MathSciNet  CrossRef  MATH  Google Scholar 

  23. Demir, E., Bektaş, T., Laporte, G.: A comparative analysis of several vehicle emission models for road freight transportation. Transp. Res. Part D: Transp. Environ. 16(5), 347–357 (2011)

    CrossRef  Google Scholar 

  24. Demir, E., Bektaş, T., Laporte, G.: An adaptive large neighborhood search heuristic for the pollution-routing problem. Eur. J. Oper. Res. 223(2), 346–359 (2012)

    MathSciNet  CrossRef  MATH  Google Scholar 

  25. Demir, E., Bektaş, T., Laporte, G.: A review of recent research on green road freight transportation. Eur. J. Oper. Res. 237(3), 775–793 (2014)

    CrossRef  MATH  Google Scholar 

  26. Erdoğan, S., Miller-Hooks, E.: A green vehicle routing problem. Transp. Res. Part E: Logist. Transp. Rev. 48(1), 100–114 (2012)

    CrossRef  Google Scholar 

  27. Fakcharoenphol, J., Harrelson, C., Rao, S.: The k-traveling repairman problem. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 655–664. Society for Industrial and Applied Mathematics (2003)

    Google Scholar 

  28. Fisher, M.L.: Optimal solution of vehicle routing problems using minimum k-trees. Oper. Res. 42(4), 626–642 (1994)

    MathSciNet  CrossRef  MATH  Google Scholar 

  29. Fukasawa, R., Longo, H., Lysgaard, J., de Aragão, M.P., Reis, M., Uchoa, E., Werneck, R.F.: Robust branch-and-cut-and-price for the capacitated vehicle routing problem. Math. Program. 106(3), 491–511 (2006)

    MathSciNet  CrossRef  MATH  Google Scholar 

  30. Fukasawa, R., He, Q., Song, Y.: A branch-cut-and-price algorithm for the energy minimization vehicle routing problem. Transp. Sci. 50(1), 23–34 (2015)

    CrossRef  Google Scholar 

  31. Gaur, D.R., Singh, R.R.: Cumulative vehicle routing problem: a column generation approach. In: Ganguly, S., Krishnamurti R. (eds.) Algorithms and Discrete Applied Mathematics, pp. 262–274. Springer, Cham (2015)

    Google Scholar 

  32. Gaur, D.R., Singh, R.R.: A heuristic for cumulative vehicle routing using column generation. Discret. Appl. Math. 228, 140-157 (2016)

    MathSciNet  CrossRef  MATH  Google Scholar 

  33. Gaur, D.R., Mudgal, A., Singh, R.R.: Routing vehicles to minimize fuel consumption. Oper. Rese Lett. 41(6), 576–580 (2013)

    MathSciNet  CrossRef  MATH  Google Scholar 

  34. Gaur, D.R., Mudgal, A., Singh, R.R.: Approximation algorithms for cumulative VRP with stochastic demands. In: Govindarajan, S., Maheshwari A. (eds.) Algorithms and Discrete Applied Mathematics, pp. 176–189. Springer, Cham (2016)

    CrossRef  Google Scholar 

  35. Gendreau, M., Potvin, J.Y.: Handbook of Metaheuristics, vol. 2. Springer, New York (2010)

    CrossRef  MATH  Google Scholar 

  36. Gendreau, M., Laporte, G., Séguin, R.: Stochastic vehicle routing. Eur. J. Oper. Res. 88(1), 3–12 (1996)

    CrossRef  MATH  Google Scholar 

  37. Gendreau, M., Potvin, J.Y., Bräumlaysy, O., Hasle, G., Løkketangen, A.: Metaheuristics for the vehicle routing problem and its extensions: a categorized bibliography. In: Golden, B.L., Raghavan, S. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges, pp. 143–169. Springer, New York (2008)

    CrossRef  Google Scholar 

  38. Glover, F.W., Kochenberger, G.A.: Handbook of Metaheuristics, vol. 57. Springer Science & Business Media, New York (2006)

    MATH  Google Scholar 

  39. Gupta, A., Nagarajan, V., Ravi, R.: Technical note – approximation algorithms for VRP with stochastic demands. Oper. Res. 60(1), 123–127 (2012)

    MathSciNet  CrossRef  MATH  Google Scholar 

  40. Haimovich, M., Rinnooy Kan, A.: Bounds and heuristics for capacitated routing problems. Math. Oper. Res. 10(4), 527–542 (1985)

    MathSciNet  CrossRef  MATH  Google Scholar 

  41. Jabir, E., Panicker, V.V., Sridharan, R.: Multi-objective optimization model for a green vehicle routing problem. Procedia. Soc. Behav. Sci. 189, 33–39 (2015)

    CrossRef  Google Scholar 

  42. Jemai, J., Zekri, M., Mellouli, K.: An NSGA-II algorithm for the green vehicle routing problem. In: European Conference on Evolutionary Computation in Combinatorial Optimization, pp. 37–48. Springer, Berlin/Heidelberg (2012)

    Google Scholar 

  43. Jin, M., Liu, K., Eksioglu, B.: A column generation approach for the split delivery vehicle routing problem. Oper. Res. Lett. 36(2), 265–270 (2008)

    MathSciNet  CrossRef  MATH  Google Scholar 

  44. Kara, I., Kara, B.Y., Yetis, M.K.: Energy minimizing vehicle routing problem. In: Combinatorial Optimization and Applications, pp. 62–71. Springer, Norwell (2007)

    Google Scholar 

  45. Kara, İ., Kara, B.Y., Yetis, M.K.: Cumulative vehicle routing problems. In: Caric, T., Gold, H. (eds.) Vehicle Routing Problem, I-Tech, pp. 85–98 (2008)

    Google Scholar 

  46. Kytöjoki, J., Nuortio, T., Bräysy, O., Gendreau, M.: An efficient variable neighborhood search heuristic for very large scale vehicle routing problems. Comput. Oper. Res. 34(9), 2743–2757 (2007)

    CrossRef  MATH  Google Scholar 

  47. Laporte, G., Nobert, Y., Desrochers, M.: Optimal routing under capacity and distance restrictions. Oper. Res. 33(5), 1050–1073 (1985)

    MathSciNet  CrossRef  MATH  Google Scholar 

  48. Li, H., Lv, T., Li, Y.: The tractor and semitrailer routing problem with many-to-many demand considering carbon dioxide emissions. Transp. Res. Part D: Transp. Environ. 34, 68–82 (2015)

    CrossRef  Google Scholar 

  49. Liberatore, F., Righini, G., Salani, M.: A column generation algorithm for the vehicle routing problem with soft time windows. 4OR 9(1), 49–82 (2011)

    Google Scholar 

  50. Lin, C., Choy, K.L., Ho, G.T., Chung, S., Lam, H.: Survey of green vehicle routing problem: past and future trends. Expert Syst. Appl. 41(4), 1118–1138 (2014)

    CrossRef  Google Scholar 

  51. Lysgaard, J., Wøhlk, S.: A branch-and-cut-and-price algorithm for the cumulative capacitated vehicle routing problem. Eur. J. Oper. Res. 236(3), 800–810 (2014)

    MathSciNet  CrossRef  MATH  Google Scholar 

  52. MirHassani, S., Mohammadyari, S.: Reduction of carbon emissions in VRP by gravitational search algorithm. Manag. Environ. Qual. Int. J. 25(6), 766–782 (2014)

    CrossRef  Google Scholar 

  53. Newman, P., Alimoradian, B., Lyons, T.: Estimating fleet fuel consumption for vans and small trucks. Transp. Sci. 23(1), 46–50 (1989)

    CrossRef  Google Scholar 

  54. Ocheni, S.I.: Impact of fuel price increaseon the Nigerian economy. Mediterr. J. Soc. Sci. 6(1 S1), 560 (2015)

    Google Scholar 

  55. Park, Y., Chae, J.: A review of the solution approaches used in recent g-VRP (green vehicle routing problem). Int. J. Adv. Logist. 3(1-2), 27–37 (2014)

    CrossRef  Google Scholar 

  56. Potvin, J.Y.: Evolutionary Algorithms for Vehicle Routing. CIRRELT, Montreal (2007)

    Google Scholar 

  57. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem. Comput. Oper. Res. 31(12), 1985–2002 (2004)

    MathSciNet  CrossRef  MATH  Google Scholar 

  58. Qureshi, A.G., Taniguchi, E., Yamada, T.: Column generation-based heuristics for vehicle routing problem with soft time windows. In: Proceedings of the Eastern Asia Society for Transportation Studies, vol. 2009, pp. 151–151. Eastern Asia Society for Transportation Studies (2009)

    Google Scholar 

  59. Sahin, B., Yilmaz, H., Ust, Y., Guneri, A.F., Gulsun, B.: An approach for analysing transportation costs and a case study. Eur. J. Oper. Res. 193(1), 1–11 (2009)

    CrossRef  MATH  Google Scholar 

  60. Santos, G.T., Cantao, L.A.P., Cantao, R.F.: Vehicle routing problem with fuel consumption minimization: a case study. In: Proceedings of the XVIII Latin-Iberoamerican Conference on Operations Research, CLAIO, pp. 802–809. IEEE (2016)

    Google Scholar 

  61. Stewart, W.R., Golden, B.L.: Stochastic vehicle routing: a comprehensive approach. Eur. J. Oper. Res. 14(4), 371–385 (1983)

    CrossRef  MATH  Google Scholar 

  62. Toro, E.M., Escobar, A.H., Granada, M.: Literature review on the vehicle routing problem in the green transportation context. revista. luna. azúl 42, 362–387 (2016)

    Google Scholar 

  63. Toth, P., Vigo, D.: Branch-and-bound algorithms for the capacitated VRP. In: Toth, P., Vigo, D. (eds.) The Vehicle Routing Problem, pp. 29–51. Society for Industrial and Applied Mathematics, Philadelphia (2001)

    Google Scholar 

  64. Vaira, G., Dzemyda, G., Augutis, J., Barauskas, R., Kaklauskas, A., žilinskas, J., Bareiša, E., Marcinkevičius, V., Kurasova, O.: Genetic algorithm for vehicle routing problem. Ph.D. thesis, Vilniaus Universitetas (2014)

    Google Scholar 

  65. Xiao, Y., Konak, A.: Green vehicle routing problem with time-varying traffic congestion. In: Proceedings of the 14th INFORMS Computing Society Conference, pp. 134–148 (2015)

    Google Scholar 

  66. Xiao, Y., Konak, A.: A simulating annealing algorithm to solve the green vehicle routing & scheduling problem with hierarchical objectives and weighted tardiness. Appl. Soft Comput. 34, 372–388 (2015)

    CrossRef  Google Scholar 

  67. Xiao, Y., Konak, A.: The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion. Transp. Res. Part E: Logist. Transp. Rev. 88, 146–166 (2016)

    CrossRef  Google Scholar 

  68. Xiao, Y., Zhao, Q., Kaku, I., Xu, Y.: Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Comput. Oper. Res. 39(7), 1419–1431 (2012)

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishi Ranjan Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R.R., Gaur, D.R. (2017). Cumulative VRP: A Simplified Model of Green Vehicle Routing. In: Cinar, D., Gakis, K., Pardalos, P. (eds) Sustainable Logistics and Transportation. Springer Optimization and Its Applications, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-319-69215-9_3

Download citation