A Computer Simulation Approach to Reduce Appointment Lead-Time in Outpatient Perinatology Departments: A Case Study in a Maternal-Child Hospital

  • Miguel Ortíz-BarriosEmail author
  • Genett Jimenez-Delgado
  • Jeferson De Avila-Villalobos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10594)


A significant problem in outpatient perinatology departments is the long waiting time for pregnant women to receive an appointment. In this respect, appointment delays are related to patient dissatisfaction, no shows and sudden infant death syndrome. This paper aims to model and evaluate improvement proposals to outpatient care delivery by applying computer simulation approaches. First, suitable data is collected and analyzed. Then, a discrete-event simulation (DES) model is created and validated to determine whether it is statistically equivalent to the current system. Afterward, the average appointment lead-time is calculated and studied. Finally, improvement proposals are designed and pretested by simulation modelling and statistical comparison tests. A case study of an outpatient perinatology department from a maternal-child is shown to validate the effectiveness of DES to fully understand and manage healthcare systems. The results evidenced that changes to care delivery can be effectively assessed and appointment lead-times may be significantly reduced based on the proposed framework within this paper.


Discrete-event simulation (DES) Perinatology Outpatient care appointment lead-time Healthcare 


  1. 1.
    Giachetti, R.E.: A simulation study of interventions to reduce appointment lead-time and patient no-show rate. In: 2008 Winter Simulation Conference, pp. 1463–1468. IEEE (2008)Google Scholar
  2. 2.
    Canizares, M.J., Penneys, N.S.: The incidence of nonattendance at an urgent care dermatology clinic. J. Am. Acad. Dermatol. 46(3), 457–459 (2002)CrossRefGoogle Scholar
  3. 3.
    Ortiz, M.A., McClean, S., Nugent, C.D., Castillo, A.: Reducing appointment lead-time in an outpatient department of gynecology and obstetrics through discrete-event simulation: a case study. In: García, C.R., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A. (eds.) UCAmI 2016. LNCS, vol. 10069, pp. 274–285. Springer, Cham (2016). doi: 10.1007/978-3-319-48746-5_28 CrossRefGoogle Scholar
  4. 4.
    Neal, R.D., Tharmanathan, P., France, B., Din, N.U., Cotton, S., Fallon-Ferguson, J., Hamilton, W., Hendry, A., Hendry, M., Lewis, R., Macleod, U., Mitchell, E.D., Pickett, M., Rai, T., Shaw, K., Stuart, N., Tørring, M.L., Wilkinson, C., Williams, B., Williams, N., Emery, J.: Is increased time to diagnosis and treatment in symptomatic cancer associated with poorer outcomes? Systematic review. Br. J. Cancer 112, S92–S107 (2015)CrossRefGoogle Scholar
  5. 5.
    Mohiuddin, S., Busby, J., Savović, J., Richards, A., Northstone, K., Hollingworth, W., Donovan, J.L., Vasilakis, C.: Patient flow within UK emer-gency departments: a systematic review of the use of computer simulation modelling meth-ods. BMJ Open 7(5), e015007 (2017)CrossRefGoogle Scholar
  6. 6.
    Gillespie, J., McClean, S., Garg, L., Barton, M., Scotney, B., Fullerton, K.: A multi-phase DES modelling framework for patient-centred care. J. Oper. Res. Soc. 67(10), 1239–1249 (2016)CrossRefGoogle Scholar
  7. 7.
    Villanueva, J.: La Simulacion de Procesos, Clave en la Toma de Decisiones. Revista DYNA 83(4), 221–227 (2008)Google Scholar
  8. 8.
    Banks, J.: Introduction to simulation. In: Winter Simulation Conference, pp. 11–13 (1999)Google Scholar
  9. 9.
    Hong, T., Shang, P., Arumugam, M., Yusuff, R.: Use of simulation to solve outpatient clinic problems: A review of the literature. S. Afr. J. Ind. Eng. 24(3), 27–42 (2013)Google Scholar
  10. 10.
    Villamizar, J., Coelli, F., Pereira, W., Almeida, R.: Discrete-event computer simulation methods in the optimization of a physiotherapy clinic. Physiotherapy 97, 71–77 (2011)CrossRefGoogle Scholar
  11. 11.
    Ortiz, M.A., López-Meza, P.: Using computer simulation to improve patient flow at an outpatient internal medicine department. In: García, C.R., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A. (eds.) UCAmI 2016. LNCS, vol. 10069, pp. 294–299. Springer, Cham (2016). doi: 10.1007/978-3-319-48746-5_30 CrossRefGoogle Scholar
  12. 12.
    Coelli, F., Ferreira, R., Almeida, R., Pereira, W.: Computer simulation and discrete-event models in the analysis of a mammography clinic patient flow. Comput. Methods Programs Biomed. 87, 201–207 (2007)CrossRefGoogle Scholar
  13. 13.
    Mocarzel, B., Shelton, D., Uyan, B., Pérez, E., Jimenez, J., DePagter, L.: Modeling and simulation of patient admission services in a multi-specialty outpatient clinic. In: Proceedings of the 2013 Winter Simulation Conference, pp. 2309–2319 (2013)Google Scholar
  14. 14.
    Pitt, M., Monks, T., Crowe, S., Vasilakis, C.: Systems modelling and simulation in health service design, delivery and decision making. BMJ Qual. Safety 25, 1–8 (2015)Google Scholar
  15. 15.
    Werker, G., Sauré, A., French, J., Shechter, S.: The use of discrete-event simulation modelling to improve radiation therapy planning processes. Radiother. Oncol. 92, 76–82 (2009)CrossRefGoogle Scholar
  16. 16.
    Robinson, S., Radnorb, Z., Burgessc, N., Worthington, C.: SimLean: utilising simulation in the implementation of lean in healthcare. Eur. J. Oper. Res. 219, 188–197 (2012)CrossRefzbMATHGoogle Scholar
  17. 17.
    Bahadori, M., Mohammadnejhad, S., Ravangard, R., Teymourzadeh, E.: Using queuing theory and simulation model to optimize hospital pharmacy performance. Iran Red Crescent Med. J. 16(3), 1–7 (2014)CrossRefGoogle Scholar
  18. 18.
    Granja, C., Almada-Lobo, B., Janela, F., Seabra, J., Mendes, A.: An optimization based on simulation approach to the patient admission scheduling problem using a linear programing algorithm. J. Biomed. Inform. 52, 427–437 (2014)CrossRefGoogle Scholar
  19. 19.
    Viana, J., Brailsford, S.C., Harindra, V., Harper, P.R.: Combining discrete-event simulation and system dynamics in a healthcare setting: A composite model for Chlamydia infection. Eur. J. Oper. Res. 237, 196–206 (2014)CrossRefGoogle Scholar
  20. 20.
    Swisher, J., Jacobson, S., Jun, B., Balci, O.: Modeling and analyzing a physician clinic environment using discrete-event (visual) simulation. Comput. Oper. Res. 28, 105–125 (2001)CrossRefzbMATHGoogle Scholar
  21. 21.
    De Angelis, V., Felici, G., Impelluso, P.: Integrating simulation and optimization in health care centre management. Eur. J. Oper. Res. 150, 101–114 (2003)CrossRefzbMATHGoogle Scholar
  22. 22.
    Herazo-Padilla, N., Montoya-Torres, J.R., Munoz-Villamizar, A., Nieto Isaza, S., Ramirez Polo, L.: Coupling ant colony optimization and discrete-event simulation to solve a stochastic location-routing problem. In: 2013 Simulations Conference (WSC), pp. 3352–3362. IEEE (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Miguel Ortíz-Barrios
    • 1
    Email author
  • Genett Jimenez-Delgado
    • 2
  • Jeferson De Avila-Villalobos
    • 1
  1. 1.Department of Industrial Management, Agroindustry and OperationsUniversidad de la Costa CUCBarranquillaColombia
  2. 2.Department of Industrial Processes EngineeringInstitución Universitaria ITSASoledadColombia

Personalised recommendations