Advertisement

Epileptic Seizure Detection Using EEGs Based on Kernel Radius of Intrinsic Mode Functions

  • Qiang Li
  • Meina Ye
  • Jiang-Ling Song
  • Rui Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10594)

Abstract

The study of automated epileptic seizure detection using EEGs has attracted more and more researchers in these decades. How to extract appropriate features in EEGs, which can be applied to differentiate non-seizure EEG from seizure EEG, is considered to be crucial in the successful realization. In this work, we proposed a novel kernel-radius-based feature extraction method from the perspective of nonlinear dynamics analysis. The given EEG signal is first decomposed into different numbers of intrinsic mode functions (IMFs) adaptively by using empirical mode decomposition. Then the three-dimensional phase space representation (3D-PSR) is reconstructed for each IMF according to the time delay method. At last, the kernel radius of the corresponding 3D-PSR is defined, which aims to characterize the concentration degree of all the points in 3D-PSR. With the extracted feature KRF, we employ extreme learning machine and support vector machine as the classifiers to achieve the task of the automate epileptic seizure detection. Performances of the proposed method are finally verified on the Bonn EEG database.

Keywords

Automatic seizure detection Electroencephalogram (EEG) Empirical mode decomposition (EMD) Phase space representation (PSR) Kernel-radius-based feature Extreme learning machine (ELM) Support vector machine (SVM) 

Notes

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant 61473223.

References

  1. 1.
    Acharya, U.R., Molinari, F., Subbhuraam, V.S., Chattopadhyay, S.: Automated diagnosis of epileptic EEG using entropies. Biomed. Signal Process. Control 7, 401–408 (2012)CrossRefGoogle Scholar
  2. 2.
    Chen, L.L., Zhang, J., Zou, J.Z., Zhao, C.J., Wang, G.S.: A frame work on wavelet-based nonlinear features and extreme learning machine for epileptic seizure detection. Biomed. Signal Process. Control 10, 1–10 (2014)CrossRefGoogle Scholar
  3. 3.
    Correa, A.G., Orosco, L., Diez, P., Laciar, E.: Automatic detection of epileptic seizures in longterm EEG records. Comput. Biol. Med. 57, 66–73 (2015)CrossRefGoogle Scholar
  4. 4.
    Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.-S. (eds.) Dynamical Systems and Turbulence, Warwick 1980. LNM, vol. 898, pp. 366–381. Springer, Heidelberg (1981). doi: 10.1007/BFb0091924 CrossRefGoogle Scholar
  5. 5.
    Huang, N.E., Zheng, S., Long, S.R., Wu, M.C.: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 454, 903–995 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Song, J.-L., Zhang, R.: Automated detection of epileptic EEGS using a novel fusion feature and extreme learning machine. Neurocomputing 175, 383–391 (2016)CrossRefGoogle Scholar
  7. 7.
    Kumar, Y., Dewal, M.L., Anand, R.S.: Epileptic seizuredetection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing 133, 271–279 (2014)CrossRefGoogle Scholar
  8. 8.
    Li, S.F., Zhong, W.D., Yuan, Q., Geng, S.J., Cai, D.M.: Feature extraction and recognition of ictal EEG using EMD and SVM. Comput. Biol. Med. 43, 807–816 (2013)CrossRefGoogle Scholar
  9. 9.
    Niknazar, M., Mousavi, S.R.: A new dissimilarity index of EEG signals for epileptic seizure detection. In: Control and Signal Processing, pp. 1–5 (2010)Google Scholar
  10. 10.
    Niknazar, M., Mousavi, S.R., Shamsollahi, M., Vahdat, B.V., Sayyah, M., Motaghi, S., Dehghani, A., Noorbakhsh, S.: Application of a dissimilarity index of EEG and its sub-bands on prediction of induced epileptic seizures from rat’s EEG signals. IRBM 33, 298–307 (2012)CrossRefGoogle Scholar
  11. 11.
    Nicolaou, N., Georgiou, J.: Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Syst. Appl. 39, 202–209 (2012)CrossRefGoogle Scholar
  12. 12.
    Ouyang, G., Li, X.L., Guan, X.P.: Use of fuzzy similarity index for epileptic seizure prediction. In: The 5th World Congress on Intelligent Control and Automation, Hang Zhou, China, vol. 6, pp. 5351–5355 (2004)Google Scholar
  13. 13.
    Quyen, M.L.V., Mattinerie, J., Navarro, V., Boon, P., DHave, M., Adam, C.: Anticipation of epileptic seizures from standard EEG recordings. Lancer 357, 183–188 (2001)CrossRefGoogle Scholar
  14. 14.
    Siuly, Y., Wen, P.P.: Clustering technique-based least square support vector machine for EEG signal classification. Comput. Meth. Prog. Biomed 104, 358–372 (2011)CrossRefGoogle Scholar
  15. 15.
    Song, J.L., Zhang, R.: Application of extreme learning machine to epileptic seizure detection based on lagged poincare plots. Multidimension. Syst. Signal Process. 28, 945–959 (2017)CrossRefGoogle Scholar
  16. 16.
    Song, Y., Crowcroft, J., Zhang, J.: Automated epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J. Neurosci. Methods 210, 132–146 (2012)CrossRefGoogle Scholar
  17. 17.
    Tito, M., Cabrerizo, M., Ayala, M., Barreto, A., Miller, I., Jayakar, P., Adjouadi, M.: Classification of electroencephalographic seizure recordings into ictal and interictal files using correlation sum. Comput. Biol. Med. 39, 604–614 (2009)CrossRefGoogle Scholar
  18. 18.
    Übeylia, E.D., Güler, I.: Detection of electrocardiographic changes in partial epileptic patients using lyapunov exponents with multilayer perceptron neural networks. Eng. Appl. Artif. Intell. 17, 567–576 (2004)CrossRefGoogle Scholar
  19. 19.
    Yuan, Q., Zhou, W., Li, S., Cai, D.: Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy Res. 96, 29–38 (2011)CrossRefGoogle Scholar
  20. 20.
    Zhang, Y.L., Zhou, W.D., Yuan, S.S., Yuan, Q.: Seizure detection method based on fractal dimension and gradient boosting. Epilepsy Behav. 43, 30–38 (2015)CrossRefGoogle Scholar
  21. 21.
    Zhu, G., Li, Y., Wen, P.: Epileptic seizure detection in eegs signals using a fast weighted horizontal visibility algorithm. Comput. Biol. Med. 115, 64–75 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Qiang Li
    • 1
  • Meina Ye
    • 1
  • Jiang-Ling Song
    • 1
  • Rui Zhang
    • 1
  1. 1.The Medical Big Data Research CenterNorthwest UniversityXi’anChina

Personalised recommendations