Skip to main content

Empirical Analysis of Factors Influencing Twitter Hashtag Recommendation on Detected Communities

Part of the Lecture Notes in Computer Science book series (LNAI,volume 10604)


Due to the limited length of tweets, hashtags are often used by users in their tweets. Thus, hashtag recommendation is highly desirable for users in Twitter to find useful hashtags when they type in tweets. However, there are many factors that may affect the effectiveness of hashtag recommendation, which includes social relationships, textual information and user profiling based on hashtag preference. In this paper, we aim to analyse the effect of these factors in hashtag recommendation on the detected communities in Twitter. In details, we seek answers to the two questions: What is the most significant factor in recommending hashtags in the context of detected communities? How the different community detection algorithms and the size of the communities affect the performance of hashtag recommendation?

To answer these questions, we detect the communities using two algorithms: Breadth First Search (BFS) and Clique Percolation Method (CPM). On the randomly detected communities, we investigate the quality and the behaviour of the recommended hashtags people consumed. From the extensive experimental results, we have the following conclusions. First, social factor is the most significant factor along with the textual factor for hashtag recommendation. Second, we find that the quality of the hashtag recommendation in the community detected using CPM clearly outperforms that using BFS. Third, incorporating user profiling increases the quality of the recommended hashtags.


  • Social networks
  • Twitter
  • Hashtag recommendation
  • Community detection
  • User profiling

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-69179-4_9
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-69179-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.


  1. Bollobas, B., Kozma, R., Miklos, D.: Handbook of Large-Scale Random Networks. Bolyai Society Mathematical Studies, 1st edn. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  2. Dovgopol, R., Nohelty, M.: Twitter Hash Tag Recommendation. CoRR abs/1502.00094 (2015)

    Google Scholar 

  3. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. Language, Speech, and Communication. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  4. Ferragina, P., Piccinno, F., Santoro, R.: On analyzing hashtags in Twitter. In: Ninth International AAAI Conference on Web and Social Media (2015)

    Google Scholar 

  5. Harvey, M., Crestani, F.: Long Time, No Tweets! Time-aware Personalised Hashtag Suggestion, pp. 581–592. Springer, Cham (2015)

    Google Scholar 

  6. Wagenseller III, P., Wang, F.: Community Detection Algorithm Evaluation using Size and Hashtags. CoRR abs/1612.03362 (2016)

    Google Scholar 

  7. Kowald, D., Pujari, S., Lex, E.: Temporal effects on hashtag reuse in twitter: a cognitive-inspired hashtag recommendation approach (2017). arXiv:1701.01276v1

  8. Kywe, S.M., Hoang, T.A., Lim, E.P., Zhu, F.: On Recommending Hashtags in Twitter Networks, pp. 337–350. Springer, Heidelberg (2012)

    Google Scholar 

  9. Li, R., Wang, S., Deng, H., Wang, R., Chang, K.: Towards social user profiling: unified and discriminative influence model for inferring home locations. In: KDD, pp. 1023–1031 (2012)

    Google Scholar 

  10. Ma, Z., Sun, A., Yuan, Q., Cong, G.: Tagging your tweets: a probabilistic modeling of hashtag annotation in Twitter. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, CIKM 2014, NY, USA, pp. 999–1008. ACM, New York (2014)

    Google Scholar 

  11. Mazzia, A., Juett, J.: Suggesting hashtags on Twitter. In: EECS 545 Project, Winter Term (2011)

    Google Scholar 

  12. Otsuka, E., Wallace, S.A., Chiu, D.: A hashtag recommendation system for Twitter data streams. Comput. Soc. Netw. 3(1), 3 (2016).

    CrossRef  Google Scholar 

  13. Palla, G., lászló Barabási, A., Vicsek, T.: Quantifying social group evolution. Nature 446, 664–667 (2007)

    CrossRef  Google Scholar 

  14. Peñas, P., del Hoyo, R., Vea-Murguía, J., González, C., Mayo, S.: Collective knowledge ontology user profiling for Twitter automatic user profiling. In: Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), WI-IAT 2013, vol. 1, pp. 439–444. IEEE Computer Society, Washington, DC (2013)

    Google Scholar 

  15. Pennacchiotti, M., Popescu, A.M.: A machine learning approach to Twitter user classification. In: ICWSM (2011)

    Google Scholar 

  16. Saramäki, J., Pekka Onnela, J., Kertész, J., Kaski, K.: Characterizing motifs in weighted complex networks (2005)

    Google Scholar 

  17. Sarkar, D. (ed.): Text Analytics with Python. Apress, Bangalore (2016)

    Google Scholar 

  18. Yang, L., Sun, T., Zhang, M., Mei, Q.: We Know What @You #Tag: does the dual role affect hashtag adoption? In: Proceedings of the 21st International Conference on World Wide Web, WWW 2012, pp. 261–270. ACM, New York (2012)

    Google Scholar 

  19. Zangerle, E., Gassler, W., Specht, G.: On the impact of text similarity functions on hashtag recommendations in microblogging environments. Soc. Netw. Anal. Min. 3(4), 889–898 (2013)

    CrossRef  Google Scholar 

  20. Zhao, F., Zhu, Y., Jin, H., Yang, L.T.: A personalized hashtag recommendation approach using LDA-based topic model in microblog environment. Fut. Gener. Comput. Syst. 65(C), 196–206 (2016)

    CrossRef  Google Scholar 

Download references


This work is partially supported by the ARC Discovery Project under grant No. DP160102114 and UWA startup grant.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Areej Alsini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Alsini, A., Datta, A., Li, J., Huynh, D. (2017). Empirical Analysis of Factors Influencing Twitter Hashtag Recommendation on Detected Communities. In: Cong, G., Peng, WC., Zhang, W., Li, C., Sun, A. (eds) Advanced Data Mining and Applications. ADMA 2017. Lecture Notes in Computer Science(), vol 10604. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69178-7

  • Online ISBN: 978-3-319-69179-4

  • eBook Packages: Computer ScienceComputer Science (R0)