Skip to main content

Spintronics and Nanomemory Systems

  • Chapter
  • First Online:
  • 677 Accesses

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 26))

Abstract

The chapter presents and explains the possibilities of CNT forest growth on Fe–Pt nanoparticles for the magnetic nanomemory. The magnetoresistance phenomena – giant magnetoresistance and tunnelling magnetoresistance (GMR and TMR) – for nanomemory devices are based on CNTs of various morphologies (i.e. various chiralities, diameters). It includes metal- and semiconductor-like CNTs which can be considered as alternative variants for electromagnetic nanosensoring and magnetic nanomemory. The chapter also presents simulations of Fe–Pt magnetically disordered nanodrops, as well as spin transport models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shunin Yu 2015 Spintronic Nanomemory and Nanosensor Devices Based on Carbon Nanotube-Fe-Pt Interconnects: Models and Simulations LAP (Saarbrücken-Germany: Lambert Academic Publishing) 50 p

    Google Scholar 

  2. Bergeson J D, Etzkorn S J, Murphey M B, Qu L, Yang J Dai L, Epstein A J 2008 Iron nanoparticle driven spin-valve behavior in aligned carbon nanotube arrays Appl. Phys. Lett. 93 172505-1-3

    Google Scholar 

  3. Thamankar R, Niyogi S, Yoo B Y, Rheem Y W, Myung N V, Haddon R C, Kawakamia R K 2006 Spin-polarized transport in magnetically assembled carbon nanotube spin valves Appl. Phys. Lett. 89 033119-1-3

    Google Scholar 

  4. Céspedes O, Ferreira M S, Sanvito S, Kociak M, Coey J M D 2004 Contact induced magnetism in carbon nanotubes Journal of Physics: Condensed Matter 16(10) L155–61

    Google Scholar 

  5. Barth’el’emy A, Fert A, Contour J-P, Bowen M, Cros V, De Teresa J M, Hamzic A, Faini J C, George J M, Grollier J, Montaigne F, Pailloux F, Petroff F, Vouille C 2002 Magnetoresistance and spin electronics Journal of Magnetism and Magnetic Materials 242–245(1) 68–76

    Google Scholar 

  6. Hewson A C 1993 The Kondo problem to heavy fermions (Cambridge: Cambridge University Press)

    Book  Google Scholar 

  7. Baibich M N, Broto J M, Fert A, van Dau F N, Petroff, F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices Phys. Rev. Lett. 61 2472–5

    Article  ADS  Google Scholar 

  8. Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange Phys. Rev. B 39 4828–30

    Article  ADS  Google Scholar 

  9. Tsymbal E Y, Pettifor D G 2001 Perspectives of Giant Magnetoresistance In: Solid State Physics 56 Eds H Ehrenreich and F Spaepen (Oxford: Academic Press) 113–237

    Google Scholar 

  10. Julliére M 1975 Tunneling between ferromagnetic films Phys. Lett. A 54 225–6

    Article  ADS  Google Scholar 

  11. Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Large magnetoresistance at room temperature in ferromagnetic thin-film tunnel junction Phys. Rev. Lett. 74 3273–6

    Article  ADS  Google Scholar 

  12. Parkin S S P, More N, Roche K P 1990 Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr Phys. Rev. Lett. 64 2304–7

    Article  ADS  Google Scholar 

  13. Parkin S S P, Bhadra R, Roche K P 1991 Oscillatory magnetic exchange coupling through thin copper layers Phys. Rev. Lett. 66 2152–5

    Article  ADS  Google Scholar 

  14. Tsukagoshi K, Alphenaar B W, Ago H. 1999 Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube Nature 401(6753) 572–574

    Article  ADS  Google Scholar 

  15. Mott N F 1936 The Electrical Conductivity of Transition Metals Proc. Royal. Soc. 153 699–726

    Article  ADS  Google Scholar 

  16. Mott N F 1936 Resistance and thermoelectric properties of the transition metals Proc. Royal. Soc. 156 368–82

    Google Scholar 

  17. Shunin Yu N, Zhukovskii Yu F, Gopeyenko V I, Burlutskaya N Yu, Lobanova-Shunina T D, Bellucci S 2015 CNTs- and GNRs-based electromagnetic and spintronic devices: models and simulations In: Proc Int Conf NANOMEETING-2015 PHYSICS, CHEMISTRY AND APPLICATION OF NANOSTRUCTURES, 2015 Eds V E Borisenko, S V Gaponenko, V S Gurin, C H Kam (New-Jersey-London-Singapore-Beijing-Hong Kong-Taipei, Chennai: World Scientific) 207–10

    Google Scholar 

  18. Kirkpatrick S 1973 Percolation and Conduction Rev. Mod. Phys. 45 574–88

    Article  ADS  Google Scholar 

  19. Essam J Μ 1972 Phase Transition and Critical Phenomena (London-N.-Y.: Academic Press) 197 p

    Google Scholar 

  20. Brenig W, Döhler G, Wölfle P 1971 Theory of thermally assisted electron hopping in amorphous solids Z. Physik 246 1–12

    Google Scholar 

  21. Greenwood D A 1958 The Boltzmann equation in the theory of electrical conduction in metals Proc. Phys. Soc. 71 585–96

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Kubo R 1966 The fluctuation-dissipation theorem Rep. Prog. Phys. 29 255–84

    Article  ADS  MATH  Google Scholar 

  23. Kubo R 1956 A general expression for the conductivity tensor Can. J. Phys. 34 1274–7

    Article  ADS  MathSciNet  Google Scholar 

  24. Butcher P N 1974 Stochastic interpretation of the rate equation formulation of hopping transport theory: III. DC hopping analogues and their application to percolative conductance networks and spin systems J. Phys. C 7 3533–40

    Article  ADS  Google Scholar 

  25. Last В J 1972 Percolation theory and the critical concentration of a dilute Heisenberg ferromagnet J Phys. C 5 2805–12

    Article  ADS  Google Scholar 

  26. Stinchcombe R В 1973 The branching model for percolation theory and electrical conductivity J. Phys. C 6(1) L1–5

    Article  ADS  MathSciNet  Google Scholar 

  27. Stinchcombe R В 1974 Conductivity and spin-wave stiffness in disordered systems-an exactly soluble model J Phys. C 7(1) 179–203

    Article  ADS  MathSciNet  Google Scholar 

  28. de Gennes P.-G. 1979 Scaling Concepts in Polymer Physics (Ithaca and London: Cornell University Press) 38–43

    Google Scholar 

  29. de Gennes P.-G. 1976 On a relation between percolation theory and the elasticity of gels J de Phys. Lett. 37 L1–2

    Google Scholar 

  30. de Gennes P.-G. 1976 Scaling theory of polymer adsorption J de Phys. Lett. 37 1445–52

    Article  Google Scholar 

  31. Fisher M E, Essam J W 1961 Some cluster size and percolation problems J Math. Phys. 2 609–19

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Young A P 1976 The critical behaviour of disordered magnetic systems-an exactly solvable model J. Phys. C 9 2103–20

    Article  ADS  Google Scholar 

  33. Εssam J W, Gwilym K W, Loveluck J M 1976 Thermodynamic scaling laws for a dilute ferromagnet in the percolation limit by series methods J Phys. C 9 365–78

    Article  ADS  Google Scholar 

  34. Crangle J 1960 Ferromagnetism in Pd-rich palladium-iron alloys Phil. Mag. 5 335–42

    Article  ADS  Google Scholar 

  35. Βοzогth R Μ, Wolf P Α, Devis D D, Compton V В, Weгnik J 1961 Ferromagnetism in Dilute Solutions of Cobalt in Palladium Phys. Rev. 122 1157–60

    Article  ADS  Google Scholar 

  36. Parfenova V P, Alekseevskii N E, Erzinkyan A L, Shpinel’ V S 1968 Measurement of the effective magnetic fields acting on Co60 nuclei in dilute solid solutions of Co in Pd Soviet Physics JETP 26(2) 324–7

    Google Scholar 

  37. Sаrасhiк Μ P, Shaltiel D 1967 Low-Temperature Resistivity and the Sign of the Exchange Integral J Appl. Phys. 38 1155–6

    Article  Google Scholar 

  38. Сrangle С, Scott W R 1965 Dilute Ferromagnetic Alloys J Appl. Phys. 36 921–7

    Article  ADS  Google Scholar 

  39. Ginzburg S. L, Korenblit I Ya, Shender E F 1973 Spin waves and density of states in disordered ferromagnetic substances Zh. Eksp. Teor. Fiz. 64 2255–68; Sov. Phys. JETP 37(6) 1141–7

    Google Scholar 

  40. Коrenblit I Ya, Shender E F 1978 Ferromagnetism of disordered systems Uspekhi fizicheskikh nauk 126 233–68 (in Russian)

  41. Kurkijärvi J 1974 Conductivity in random systems. II. Finite-size-system percolation Phys. Rev. В 9 770–4

    Article  Google Scholar 

  42. Ambegaokar V, Cochran S, and Kurkijärvi J 1973 Conduction in Random Systems Phys. Rev. B 8 3682–8

    Article  ADS  Google Scholar 

  43. Wohlfarth E P 1982 Transport properties of ferromagnets In Ferromagnetic materials (North Holland, 1982) Ch.9 Eds I A Campbell and A Fert 747 p

    Google Scholar 

  44. Jedema F J, Filip A T, van Wees B J 2001 Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve Nature 410 345–8

    Article  ADS  Google Scholar 

  45. Jedema F J, Heersche H B, Filip A T, Baselmans J J A, van Wees B J 2002 Electrical detection of spin precession in a metallic mesoscopic spin valve Nature 416 713–6

    Article  ADS  Google Scholar 

  46. Schmidt G, Ferrand D, Molenkamp L W, Filip A T, van Wees B J 2000 Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor Phys. Rev. B 62 4790–4

    Google Scholar 

  47. Žutić I, Fabian J, and Das Sarma S 2004 Spintronics: Fundamentals and applications Rev. Mod. Phys. 76 323–410

    Article  ADS  Google Scholar 

  48. Bir G L, Aronov A G, Pikus G E 1975 Spin relaxation of electrons scattered by holes, Zh. Eksp. Teor. Fiz. 69 1382–97

    Google Scholar 

  49. Aronov A G , Pikus G E, Titkov A N 1983 Spin relaxation of conduction electrons in p-type III–V compounds Zh. Eksp. Teor. Fiz. 84 1170–84

    Google Scholar 

  50. Wu M W, Jiang J H, Weng M Q 2010 Spin dynamics in semiconductors Physics Reports 493 61–236

    Article  ADS  MathSciNet  Google Scholar 

  51. Tsukagoshi K, Alphenaar B W, Ago H 1999 Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube Nature 401 572–4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shunin, Y., Bellucci, S., Gruodis, A., Lobanova-Shunina, T. (2018). Spintronics and Nanomemory Systems. In: Nonregular Nanosystems. Lecture Notes in Nanoscale Science and Technology, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-69167-1_9

Download citation

Publish with us

Policies and ethics