Skip to main content

Surface Nanophysics: Macro-, Meso-, Micro- and Nano-approaches

  • Chapter
  • First Online:
Nonregular Nanosystems

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 26))

  • 715 Accesses

Abstract

The surface factor is very important for manipulating objects at a nanoscale. Thermodynamic behaviour is observed from the classical point of view, and conditional division into macro-, meso-, micro- and nano-approaches is presented. Processes of physical and chemical adsorption on the surface are presented from the energy and structure aspects. The occurrence of electronic states of the surface is presented from the classical point of view in comparison with molecular electronic states. One of the most important non-invasive optical methods to investigate nanoparticles is the surface plasmon resonance (SPR), which is quite useful for practical detection of nanoparticles in the surrounding environment. The interaction of light with nanoparticles is discussed within the framework of a nanoscale process. Nanoshells as practical implementation of nanosurface phenomena are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Croxton C 1980 Statistical mechanics of the liquid surface (Wiley:Chichester)

    Google Scholar 

  2. Herring C 1951 Some theorems on the free energies of crystal surfaces Phys. Rev. 82 87

    MATH  Google Scholar 

  3. Foo K Y, Hameed B H 2010 Insights into the modeling of adsorption isotherm systems Chemical Engineering Journal 156(1) 2–10

    Article  Google Scholar 

  4. Langmuir I 1916 The constitution and fundamental properties of solids and liquids. Part 1. Solids. J. Am. Chem. Soc. 38(11) 2221–95

    Google Scholar 

  5. Brunauer S, Emmett P, Teller E 1938 Adsorption of Gases in Multimolecular Layers Journal of the American Chemical Society 60(2) 309–19

    Google Scholar 

  6. Mark K T 2007 Hydrogen adsorption and storage on porous materials Catalysis Today 120(3–4) 389–98

    Google Scholar 

  7. Ströbel R, Jörissen L, Schliermann T, Trapp V, Schütz W, Bohmhammel K, Wolf G, Garche J 1999 Hydrogen adsorption on carbon materials Journal of Power Sources 84(2) 221–4

    Article  ADS  Google Scholar 

  8. Bianco S, Giorcelli M, Musso S, Castellino M, Agresti F, Khandelwal A, Lo Russo S, Kumar M, Ando Y, Tagliaferro A 2010 Hydrogen adsorption in several types of carbon nanotubes J Nanosci Nanotechnol. 10(6) 3860–6

    Article  Google Scholar 

  9. Meisner G P, Hu Q 2009 High surface area microporous carbon materials for cryogenic hydrogen storage synthesized using new template-based and activation-based approaches Nanotechnology 20(20) 204023

    Google Scholar 

  10. Inglesfield J E 1982 Surface electronic structure. Rep. Prog. Phys. 45 224–84

    Article  ADS  Google Scholar 

  11. Zangwill A 1996 Physics at Surfaces Cambridge university press

    Google Scholar 

  12. Solid State surface Science 1969 Ed. by M Green 1 (New York: Marcel Dekker)

    Google Scholar 

  13. Hyuk R G, Seong H L 2010 Spectral and Angular Responses of Surface Plasmon Resonance Based on the Kretschmann Prism Configuration Materials Transactions 51(6) 1150–5

    Google Scholar 

  14. Kubo R 1962 Electronic Properties of Metallic Fine Particles. I Journal of the Physical Society of Japan 17(6) 975–86

    Google Scholar 

  15. Schaaff G, Knight G, Shafigullin M, Borkman R, Whetten R 1998 Isolation and selected properties of a 10.4 kda gold: glutathione cluster compound Journal of Physical Chemistry B 102(52) 10645–6

    Article  Google Scholar 

  16. Cesca T, Kalinic B, Michieli N, Maurizio C, Scian C, Devaraju G, Battaglin G, Mazzoldi P, Mattei G 2014 Energy-transfer from ultra-small Au nanoclusters to Er3+ ions: a short-range mechanism Phys Chem Chem Phys 16(29) 15158–63

    Google Scholar 

  17. Mizutani U 2001 Introduction of electron theory of metals Cambridge: university press

    Google Scholar 

  18. Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N, West J, Drezek R 2004 Nanoshell-enabled photonics-based imaging and therapy of cancer Technol Cancer Res Treat. 3(1) 33–40

    Article  Google Scholar 

  19. Pena O, Pal U, Rodriguez-Fernandez L, Crespo-Sosa A 2008 Linear optical response of metallic nanoshells in different dielectric media J. Opt. Soc. Am. B 25(8) 1371–9

    Article  ADS  Google Scholar 

  20. Paithankar D, Hwang B, Munavalli G, Kauvar A, Lloyd J, Blomgren R, Faupel L, Meyer T, Mitragotri S 2015 Ultrasonic delivery of silica-gold nanoshells for photo- thermolysis of sebaceous glands in humans: Nanotechnology from the bench to clinic Journal of Controlled Release 206 30–6

    Google Scholar 

  21. Wang G, Kim T W, Lee H, Lee T 2007 Influence of Metal-Molecule Contacts on Decay Coefficients and Specific Contact Resistances in Molecular Junctions Phys. Rev. B 76 205320

    Google Scholar 

  22. Wang G, Kim T W, Jang Y H, Lee T 2008 Effects of Metal-Molecule Contact and Molecular Structure on Molecular Electronic Conduction in Nonresonant Tunneling Regime: Alkyl versus Conjugated Molecules J. Phys. Chem. C 112 13010–6

    Google Scholar 

  23. Sun L, Diaz-Fernandez Y A, Gschneidtner T A, Westerlund F, Lara-Avila S, Moth- Poulsen K 2014 Single-molecule electronics: from chemical design to functional devices Chem. Soc. Rev. 43 7378–411

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shunin, Y., Bellucci, S., Gruodis, A., Lobanova-Shunina, T. (2018). Surface Nanophysics: Macro-, Meso-, Micro- and Nano-approaches. In: Nonregular Nanosystems. Lecture Notes in Nanoscale Science and Technology, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-69167-1_5

Download citation

Publish with us

Policies and ethics