7th Open Challenge on Question Answering over Linked Data (QALD-7)

  • Ricardo Usbeck
  • Axel-Cyrille Ngonga Ngomo
  • Bastian Haarmann
  • Anastasia Krithara
  • Michael Röder
  • Giulio Napolitano
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 769)

Abstract

The past years have seen a growing amount of research on question answering (QA) over Semantic Web data, shaping an interaction paradigm that allows end users to profit from the expressive power of Semantic Web standards while, at the same time, hiding their complexity behind an intuitive and easy-to-use interface. On the other hand, the growing amount of data has led to a heterogeneous data landscape where QA systems struggle to keep up with the volume, variety and veracity of the underlying knowledge.

Notes

Acknowledgments

This work was supported by the Eurostars projects DIESEL (E!9367) and QAMEL (E!9725) as well as the European Union’s H2020 research and innovation action HOBBIT under the Grant Agreement number 688227. We also want to thank Christina Unger and Sebastian Walter for supporting this challenge.

References

  1. 1.
    Ngomo, A.-C.N., García-Rojas, A., Fundulaki, I.: HOBBIT: holistic benchmarking of big linked data. ERCIM News 2016(105) (2016)Google Scholar
  2. 2.
    Tsatsaronis, G., Balikas, G., Malakasiotis, P., Partalas, I., Zschunke, M., Alvers, M.R., Weissenborn, D., Krithara, A., Petridis, S., Polychronopoulos, D., Almirantis, Y., Pavlopoulos, J., Baskiotis, N., Gallinari, P., Artières, T., Ngonga, A., Heino, N., Gaussier, É., Barrio-Alvers, L., Schroeder, M., Androutsopoulos, I., Paliouras, G.: An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition. BMC Bioinformatics 16, 138 (2015)CrossRefGoogle Scholar
  3. 3.
    Usbeck, R., Michael, R., Unger, C., Hoffmann, M., Demmler, C., Huthmann, J., Ngomo, A.-C.N.: Benchmarking question answering systems. Technical report, Leipzig University (2016)Google Scholar
  4. 4.
    Voorhees, E.M., et al.: The trec-8 question answering track report. Trec 99, 77–82 (1999)Google Scholar
  5. 5.
    Zou, L., Huang, R., Wang, H., Yu, J.X., He, W., Zhao, D.: Natural language question answering over RDF: a graph data driven approach. In: Proceedings of the 2014 ACM SIGMOD international conference on Management of Data, pp. 313–324. ACM (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ricardo Usbeck
    • 1
  • Axel-Cyrille Ngonga Ngomo
    • 1
  • Bastian Haarmann
    • 2
  • Anastasia Krithara
    • 3
  • Michael Röder
    • 1
  • Giulio Napolitano
    • 2
  1. 1.Data Science Group, Paderborn UniversityPaderbornGermany
  2. 2.Fraunhofer-Institute IAISSankt AugustinGermany
  3. 3.National Center for Scientific Research “Demokritos”AthensGreece

Personalised recommendations