Challenge Accepted: QUAD Meets MOCHA2017

  • Alexander Potocki
  • Daniel Hladky
  • Martin Voigt
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 769)


Native RDF ( stores have been making enormous progress in closing the performance gap compared to relational database management systems (RDBMS). But this small gap, however, still prevents the adoption of RDF stores in scenarios for large-scale enterprise applications. We solve this problem with our native RDF store QUAD and its fundamental design principles. It is based on a vector database schema for quadruples and it is realized by facilitating various index data structures. QUAD also comprises approaches to optimize the SPARQL query execution plan by using heuristic transformations. In this short paper, we briefly introduce QUAD and sketch in which tasks of the Mighty Storage Challenge we will attend to benchmark the current performance capabilities.


RDF SPARQL Index Query optimization Benchmarking 



This work was partially supported by the BMWi project SAKE (Grant No. 01MD15006).


  1. 1.
    Potocki, A., Polukhin, A., Drobyazko, G., Hladky, D., Klintsov, V., Unbehauen, J.: OntoQuad: native high-speed RDF DBMS for semantic web. In: Klinov, P., Mouromtsev, D. (eds.) KESW 2013. CCIS, vol. 394, pp. 117–131. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41360-5_10 CrossRefGoogle Scholar
  2. 2.
    Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. Technical report, W3C Recommendation (2013).
  3. 3.
    Harth, A., Decker, S.: Optimized index structures for querying RDF from the web. In: LA-WEB (Latin American Web Congress) (2005)Google Scholar
  4. 4.
    Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: a federated repository for querying graph structured data from the web. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 211–224. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-76298-0_16 CrossRefGoogle Scholar
  5. 5.
    Harth, A., Decker, S.: Yet Another RDF Store: Perfect Index Structures for Storing Semantic Web Data With Context, DERI Technical report (2004)Google Scholar
  6. 6.
    Baolin, L., Bo, H.: HPRD: a high performance RDF database. In: Li, K., Jesshope, C., Jin, H., Gaudiot, J.-L. (eds.) NPC 2007. LNCS, vol. 4672, pp. 364–374. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74784-0_37 CrossRefGoogle Scholar
  7. 7.
    Weiss, C., Karras, P., Bernstein, A.: Sextuple Indexing for Semantic Web Data Management. PVLDB 1(1), 1008–1019 (2008)Google Scholar
  8. 8.
    Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable semantic web data management using vertical partitioning. In: VLDB, pp. 411–422 (2007)Google Scholar
  9. 9.
    Wood, D., Gearon, P., Adams, T.: Kowari: a platform for semantic web storage and analysis. In: XTeGh (2005)Google Scholar
  10. 10.
    Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF data. J. VLDB 19(1), 91–113 (2010)CrossRefGoogle Scholar
  11. 11.
    Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. PVLDB 1(1), 647–659 (2008)Google Scholar
  12. 12.
    Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic graph pattern optimization using selectivity estimation. In: WWW 2008, pp. 595–604. ACM, New York (2008)Google Scholar
  13. 13.
    Gomathi, R., Sathya, C.: Efficient optimization of multiple SPARQL queries. IOSR J. Comput. Eng. (IOSR-JCE) 8(6) (2013), pp. 97–101 (2013)., e-ISSN: 2278–0661, p- ISSN: 2278–8727
  14. 14.
    Graefe, G.: Query evaluation techniques for large databases. ACM Comput. Surv. 25(2), 73–170 (1993)CrossRefGoogle Scholar
  15. 15.
    Johnson, T., Shasha, T.: 2Q: A low overhead high performance buffer management replacement algorithm. In: Proceedings of the 20th International Conference on Very Large Data Bases (VLDB 1994), San Francisco, CA, USA, pp. 439–450 (1994)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alexander Potocki
    • 1
  • Daniel Hladky
    • 1
  • Martin Voigt
    • 1
  1. 1.Ontos GmbHLeipzigGermany

Personalised recommendations