Advertisement

Fine-Grained Sentiment Analysis on Financial Microblogs and News Headlines

  • Mattia Atzeni
  • Amna Dridi
  • Diego Reforgiato Recupero
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 769)

Abstract

Sentiment analysis in the financial domain is quickly becoming a prominent research topic as it provides a powerful method to predict market dynamics. In this work, we leverage advances in Semantic Web area to develop a fine-grained approach to predict real-valued sentiment scores. We compare several classifiers trained on two different datasets. The first dataset consists of microblog messages focusing on stock market events, while the second one consists of financially relevant news headlines crawled from different sources on the Internet. We test our approach using several feature sets including lexical features, semantic features and a combination of lexical and semantic features. Experimental results show that the proposed approach allows achieving an accuracy level of more than \(72\%\).

Keywords

Sentiment analysis Financial domain Stock market prediction Frame semantics Microblogs News BabelNet Regression 

References

  1. 1.
    Ahmad, K., Cheng, D., Almas, Y.: Multi-lingual sentiment analysis of financial news streams. In: Proceedings of the 1st International Conference on Grid in Finance. Palermo, Italy (2006)Google Scholar
  2. 2.
    Baker, C.F., Fillmore, C.J., Lowe, J.B.: The berkeley framenet project. In: Proceedings of the 17th International Conference on Computational Linguistics COLING 1998, Association for Computational Linguistics, vol. 1, pp. 86–90. Stroudsburg (1998). http://dx.doi.org/10.3115/980451.980860
  3. 3.
    Drake, A., Ringger, E.K., Ventura, D.: Sentiment regression: using real-valued scores to summarize overall document sentiment. In: ICSC, pp. 152–157. IEEE Computer Society (2008)Google Scholar
  4. 4.
    Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  5. 5.
    Gangemi, A., Alam, M., Asprino, L., Presutti, V., Recupero, D.R.: Framester: a wide coverage linguistic linked data hub. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 239–254. Springer, Cham (2016). doi: 10.1007/978-3-319-49004-5_16 CrossRefGoogle Scholar
  6. 6.
    Ghiassi, M., Skinner, J., Zimbra, D.: Twitter brand sentiment analysis: a hybrid system using n-gram analysis and dynamic artificial neural network. Expert Syst. Appl. 40(16), 6266–6282 (2013). http://dx.doi.org/10.1016/j.eswa.2013.05.057
  7. 7.
    Goonatilake, R., Herath, S.: The volatility of the stock market and news. Int. Res. J. Finan. Econ. 3(11), 53–65 (2007)Google Scholar
  8. 8.
    Van de Kauter, M., Breesch, D., Hoste, V.: Fine-grained analysis of explicit and implicit sentiment in financial news articles. Expert Syst. Appl. 42(11), 4999–5010 (2015). http://dx.doi.org/10.1016/j.eswa.2015.02.007
  9. 9.
    Khadjeh Nassirtoussi, A., Aghabozorgi, S., Ying Wah, T., Ngo, D.C.L.: Review: text mining for market prediction: a systematic review. Expert Syst. Appl. 41(16), 7653–7670 (2014). http://dx.doi.org/10.1016/j.eswa.2014.06.009
  10. 10.
    Mostafa, M.M.: More than words: social networks’ text mining for consumer brand sentiments. Expert Syst. Appl. 40(10), 4241–4251 (2013). http://dx.doi.org/10.1016/j.eswa.2013.01.019
  11. 11.
    Navigli, R., Ponzetto, S.P.: Babelnet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012). http://dx.doi.org/10.1016/j.artint.2012.07.001
  12. 12.
    O’Hare, N., Davy, M., Bermingham, A., Ferguson, P., Sheridan, P., Gurrin, C., Smeaton, A.F.: Topic-dependent sentiment analysis of financial blogs. In: Proceedings of the 1st International CIKM Workshop on Topic-sentiment Analysis for Mass Opinion, pp. 9–16. TSA 2009. ACM, New York (2009). http://doi.acm.org/10.1145/1651461.1651464
  13. 13.
    Sprenger, T.O., Tumasjan, A., Sandner, P.G., Welpe, I.M.: Tweets and trades: the information content of stock microblogs. Eur. Financ. Manag. 20(5), 926–957 (2014). http://dx.doi.org/10.1111/j.1468-036X.2013.12007.x

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mattia Atzeni
    • 1
  • Amna Dridi
    • 1
  • Diego Reforgiato Recupero
    • 1
  1. 1.Università Degli Studi di Cagliari, Department of Mathematics and Computer ScienceCagliariItaly

Personalised recommendations