Skip to main content

Reasoning About Belief, Evidence and Trust in a Multi-agent Setting

  • Conference paper
  • First Online:
PRIMA 2017: Principles and Practice of Multi-Agent Systems (PRIMA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10621))

Abstract

We present a logic for reasoning about the interplay between belief, evidence and trust in a multi-agent setting. We call this logic DL-BET which stands for “Dynamic Logic of Belief, Evidence and Trust”. According to DL-BET, if the amount of evidence in support a given fact \(\varphi \) and the ratio of evidence in support of \(\varphi \) to the total amount of evidence in support of either \(\varphi \) or its negation are sufficient then, as a consequence, one should be willing to believe \(\varphi \). We provide a sound and complete axiomatization for the logic and illustrate its expressive power with the aid of a concrete example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As we will show in Sect. 3, formula \(\lnot \mathsf { T}_{i {, } j } \bot \) is valid in the logic DL-BET. Thus, if \(\mathsf { T}_{i {, } j }\) was a normal modal operator, \( \lnot (\mathsf { T}_{i {, } j } \varphi \wedge \mathsf { T}_{i {, } j } \lnot \varphi )\) would have been valid, which is highly counter-intuitive.

  2. 2.

    Note that this ratio can be conceived as the probability that \(\varphi \) is true, computed of the basis of the number of evidence supporting \(\varphi \).

  3. 3.

    Here we take the term “envisaged” to be synonymous of the term “imagined”. Clearly, there are situations that one can imagine that she considers impossible. For example, a person can imagine a situation in which she is the president of French republic and, at the same time, considers this situation impossible.

  4. 4.

    The proof can be found in the extended version of this paper [28].

References

  1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet contraction and revision functions. J. Symbo. Logic 50, 510–530 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artemov, S.N.: The logic of justification. Rev. Symb. Logic 1(4), 477–513 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ayer, A.J.: Probability and Evidence. Columbia University Press, New York City (1972)

    Book  Google Scholar 

  4. Baltag, A., Liu, F., Smets, S.: Reason-based belief revision in social networks. In: Slides, KNAW-Workshp on the Logical Dynamics of Information, Agency and Interaction, Amsterdam (2014)

    Google Scholar 

  5. Baltag, A., Moss, L.S., Solecki, S.: The logic of common knowledge, public announcements, and private suspicions. In: Gilboa, I. (ed.) Proceedings of the 7th Conference on Theoretical Aspects of Rationality and Knowledge (TARK 1998), pp. 43–56 (1998)

    Google Scholar 

  6. Baltag, A., Renne, B., Smets, S.: The logic of justified belief, explicit knowledge, and conclusive evidence. Ann. Pure Appl. Logic 165(1), 49–81 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision. In: Wooldridge, M., Bonanno, G., van der Hoek, W. (eds.) Logic and the Foundations of Game and Decision Theory. Texts in Logic and Games, vol. 3. Amsterdam University Press, Amsterdam (2008)

    Google Scholar 

  8. van Benthem, J.: Dynamic logic for belief revision. J. Appl. Non Class. Logic 17, 129–156 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  10. van Benthem, J., Fernández-Duque, D., Pacuit, E.: Evidence logic: a new look at neighborhood structures. In: Bolander, T., Braüner, T., Ghilardi, S., Moss, L. (eds.) Proceedings of Advances in Modal Logic, vol. 9, pp. 97–118. King’s College Press, London (2012)

    Google Scholar 

  11. van Benthem, J., Pacuit, E.: Dynamic logics of evidence-based beliefs. Studia Logica 99(1–3), 61–92 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)

    Book  MATH  Google Scholar 

  13. Christoff, Z.: Dynamic logics of networks. Information Flow and the Spread of Opinion. Ph.D. thesis, ILLC, University of Amsterdam (2016)

    Google Scholar 

  14. Dastani, M., Herzig, A., Hulstijn, J., van der Torre, L.: Inferring trust. In: Leite, J., Torroni, P. (eds.) CLIMA 2004. LNCS, vol. 3487, pp. 144–160. Springer, Heidelberg (2005). doi:10.1007/11533092_9

    Chapter  Google Scholar 

  15. Dietrich, F., List, C.: Judgment aggregation by quota rules: majority voting generalized. J. Theor. Polit. 19(4), 391–424 (2007)

    Article  Google Scholar 

  16. Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  17. Dubois, D., Liu, W., Ma, J., Prade, H.: The basic principles of uncertain information fusion. An organised review of merging rules in different representation frameworks. Inf. Fusion 32, 12–39 (2016)

    Article  Google Scholar 

  18. Dubois, D., Prade, H.: Representation and combination of uncertainty with belief functions and possibility measures. Comput. Intell. 4(3), 244264 (1988)

    Article  Google Scholar 

  19. Falcone, R., Castelfranchi, C.: Social trust: a cognitive approach. In: Tan, Y.-H., Castelfranchi, C. (eds.) Trust and Deception in Virtual Societies, pp. 55–90. Springer, Netherlands (2001). doi:10.1007/978-94-017-3614-5_3. Chap. 1

    Chapter  Google Scholar 

  20. Friedman, J.: Suspended judgment. Philos. Stud. 162(2), 165–181 (2013)

    Article  Google Scholar 

  21. Grandi, U., Lorini, E., Perrussel, L.: Propositional opinion diffusion. In: Proceedings of the 14th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2015), pp. 989–997. ACM Press (2015)

    Google Scholar 

  22. Hunter, A., Booth, R.: Trust-sensitive belief revision. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 3062–3068. AAAI Press (2015)

    Google Scholar 

  23. Jøsang, A.: A logic for uncertain probabilities. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 9(3), 279–311 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jøsang, A.: Interpretation of fusion and hyper opinions in subjective logic. In: 15th International Conference on Information Fusion, Singapore, pp. 1225–1232 (2017)

    Google Scholar 

  25. Keynes, J.M.: A Treatise on Probability. The Collected Writings, vol. 8. Macmillan, Hampshire (1973)

    Book  MATH  Google Scholar 

  26. Kraus, S., Lehmann, D.J.: Knowledge, belief and time. Theoret. Comput. Sci. 58, 155–174 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liau, C.-J.: Belief, information acquisition, and trust in multi-agent systems: a modal logic formulation. Artif. Intell. 149(1), 31–60 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, F., Lorini, E.: Reasoning about belief, evidence and trust in a multi-agent setting (extended version). Technical report, Institut de Recherche en Informatique de Toulouse (IRIT) (2017)

    Google Scholar 

  29. Liu, F., Seligman, J., Girard, P.: Logical dynamics of belief change in the community. Synthese 191(11), 2403–2431 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lorini, E.: A minimal logic for interactive epistemology. Synthese 193(3), 725–755 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lorini, E., Jiang, G., Perrussel, L.: Trust-based belief change. In: Proceedings of the 21st European Conference on Artificial Intelligence (ECAI 2014), pp. 549–554. IOS Press (2014)

    Google Scholar 

  32. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  33. Singh, M.: Trust as dependence: a logical approach. In: Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), pp. 863–870. ACM (2011)

    Google Scholar 

  34. Xue, Y., Parikh, R.: Strategic belief updates through influence in a community. Stud. Logic 8, 124–143 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiliano Lorini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liu, F., Lorini, E. (2017). Reasoning About Belief, Evidence and Trust in a Multi-agent Setting. In: An, B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds) PRIMA 2017: Principles and Practice of Multi-Agent Systems. PRIMA 2017. Lecture Notes in Computer Science(), vol 10621. Springer, Cham. https://doi.org/10.1007/978-3-319-69131-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69131-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69130-5

  • Online ISBN: 978-3-319-69131-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics