Negotiation for Incentive Driven Privacy-Preserving Information Sharing

  • Reyhan AydoğanEmail author
  • Pinar Øzturk
  • Yousef Razeghi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10621)


This paper describes an agent-based, incentive-driven, and privacy-preserving information sharing framework. Main contribution of the paper is to give the data provider agent an active role in the information sharing process and to change the currently asymmetric position between the provider and the requester of data and information (DI) to the favor of the DI provider. Instead of a binary yes/no answer to the requester’s data request and the incentive offer, the provider may negotiate about excluding from the requested DI bundle certain pieces of DI with high privacy value, and/or ask for a different type of incentive. We show the presented approach on a use case. However, the proposed architecture is domain independent.


Data and information sharing Incentive-driven Secrecy and privacy risk Negotiation Privacy-preserving agent systems 



We would like to thank Murat Sensoy and Pinar Yolum for our fruitful discussions. This work was supported by the ITEA M2MGrids Project, ITEA141011.


  1. 1.
    Acquisti, A., Grossklags, J.: Privacy and rationality in individual decision making. IEEE Secur. Priv. 3(1), 26–33 (2005)CrossRefGoogle Scholar
  2. 2.
    Baarslag, T., Alan, A.T., Gomer, R., Alam, M., Perera, C., Gerding, E.H., et al.: An automated negotiation agent for permission management. In: Proceedings of the 16th Conference on AAMAS, pp. 380–390 (2017)Google Scholar
  3. 3.
    Baarslag, T., Gerding, E.H., Aydoğan, R., Schraefel, M.: Optimal negotiation decision functions in time-sensitive domains. In: Web Intelligence and Intelligent Agent Technology (WI-IAT), vol. 2, pp. 190–197. IEEE (2015)Google Scholar
  4. 4.
    Barnes, S.: A privacy paradox: social networking in the united states. First Monday 11(1) (2006)Google Scholar
  5. 5.
    Barth, S., de Jong, M.D.: The privacy paradox investigating discrepancies between expressed privacy concerns and actual online behavior a systematic literature review. Telematics and Informatics (2017, in press)Google Scholar
  6. 6.
    Becker, M.C., Knudsen, T.: The role of routines in reducing pervasive uncertainty. J. Bus. Res. 58(6), 746–757 (2005)CrossRefGoogle Scholar
  7. 7.
    Culnan, M.J., Armstrong, P.K.: Information privacy concerns, procedural fairness, and impersonal trust: an empirical investigation. Organ. Sci. 10(1), 104–115 (1999)CrossRefGoogle Scholar
  8. 8.
    Dinev, T., Hart, P.: An extended privacy calculus model for e-commerce transactions. Inf. Syst. Res. 17(1), 61–80 (2006)CrossRefGoogle Scholar
  9. 9.
    El-Khatib, K.: A privacy negotiation protocol for web services. In: Workshop on Collaboration Agents: Autonomous Agents for Collaborative Environments, pp. 85–92. Halifax (2003)Google Scholar
  10. 10.
    Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make issue trade-offs in automated negotiations. Artif. Intell. 142(2), 205–237 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fatima, S., Kraus, S., Wooldridge, M.: Principles of Automated Negotiation. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  12. 12.
    Jonker, C.M., Aydoğan, R., Baarslag, T., Fujita, K., Ito, T., Hindriks, K.: Automated negotiating agents competition. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), pp. 5070–5072. AAAI Press (2017)Google Scholar
  13. 13.
    Jonker, C.M., Robu, V., Treur, J.: An agent architecture for multi-attribute negotiation using incomplete preference information. Auton. Agent. Multi-Agent Syst. 15(2), 221–252 (2007)CrossRefGoogle Scholar
  14. 14.
    Kafalı, Ö., Günay, A., Yolum, P.: Protoss: A run time tool for detecting privacy violations in online social networks. In: ASONAM, pp. 429–433 (2012)Google Scholar
  15. 15.
    Kawaguchi, S., Fujita, K., Ito, T.: AgentK: compromising strategy based on estimated maximum utility for automated negotiating agents. In: Ito, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T. (eds.) New Trends in Agent-Based Complex Automated Negotiations. SCI, vol. 383, pp. 137–144. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-24696-8_8 CrossRefGoogle Scholar
  16. 16.
    Kokciyan, N., Yolum, P.: PRIGUARD : a semantic approach to detect privacy violations in online social networks. IEEE Trans. Knowl. Data Eng. 28(10), 2724–2737 (2016)CrossRefGoogle Scholar
  17. 17.
    Krasnova, H., Veltri, N.F., Günther, O.: Self-disclosure and privacy calculus on social networking sites: the role of culture. Bus. Inf. Syst. Eng. 4(3), 127–135 (2012)CrossRefGoogle Scholar
  18. 18.
    Li, H., Sarathy, R., Xu, H.: The role of affect and cognition on online consumers’ decision to disclose personal information to unfamiliar online vendors. Decis. Support Syst. 51(3), 434–445 (2011)CrossRefGoogle Scholar
  19. 19.
    Lin, R., Kraus, S., Baarslag, T., Tykhonov, D., Hindriks, K., Jonker, C.M.: Genius: an integrated environment for supporting the design of generic automated negotiators. Comput. Intell. 30(1), 48–70 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Culnan, M.J., Bies, R.J.: Consumer privacy: balancing economic and justice considerations. J. Soc. Issues 59(2), 323–342 (2003)CrossRefGoogle Scholar
  21. 21.
    Preibusch, S.: Implementing privacy negotiation techniques in e-commerce. In: Seventh IEEE International Conference on E-Commerce Technology, CEC 2005, pp. 387–390. IEEE (2005)Google Scholar
  22. 22.
    Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50(1), 97–109 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Taddei, S., Contena, B.: Privacy, trust and control: which relationships with online self-disclosure? Comput. Hum. Behav. 29(3), 821–826 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Reyhan Aydoğan
    • 1
    • 2
    • 3
    Email author
  • Pinar Øzturk
    • 4
  • Yousef Razeghi
    • 1
  1. 1.Department of Computer ScienceÖzyeğin UniversityIstanbulTurkey
  2. 2.Interactive Intelligence GroupDelft University of TechnologyDelftThe Netherlands
  3. 3.Frontier Research Institute for Information ScienceNagoya Institute of TechnologyNagoyaJapan
  4. 4.Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations