Abstract
Opinion polls are used in a variety of settings to assess the opinions of a population, but they mostly conceal the reasoning behind these opinions. Argumentation, as understood in AI, can be used to evaluate opinions in dialectical exchanges, transparently articulating the reasoning behind the opinions. We give a method integrating argumentation within opinion polling to empower voters to add new statements that render their opinions in the polls individually rational while at the same time justifying them. We then show how these poll results can be amalgamated to give a collectively rational set of voters in an argumentation framework. Our method relies upon Quantitative Argumentation Debate for Voting (QuAD-V) frameworks, which extend QuAD frameworks (a form of bipolar argumentation frameworks in which arguments have an intrinsic strength) with votes expressing individuals’ opinions on arguments.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
This requirement is imposed without loss of generality (see [1]).
- 11.
From here onwards, we give only the components of \(\mathcal {Q}_{j\,+\,1}^{u_{i}}\) different to those in \(\mathcal {Q}_{j}^{u_{i}}\).
- 12.
References
Baroni, P., Romano, M., Toni, F., Aurisicchio, M., Bertanza, G.: Automatic evaluation of design alternatives with quantitative argumentation. Argum. Comput. 6(1), 24–49 (2015). http://dx.doi.org/10.1080/19462166.2014.1001791
Bessette, J.: Deliberative democracy: the majority principle in Republican government. How Democr. Const. 102, 109–111 (1980)
Buckingham-Shum, S.: Cohere: towards web 2.0 argumentation. In: Computational Models of Argument: Proceedings of COMMA 2008, Toulouse, France, 28–30 May 2008, pp. 97–108 (2008). http://www.booksonline.iospress.nl/Content/View.aspx?piid=9271
Caminada, M.W.A., Gabbay, D.M.: A logical account of formal argumentation. Studia Log. 93(2–3), 109–145 (2009). http://dx.doi.org/10.1007/s11225-009-9218-x
Cartwright, D., Atkinson, K.: Political engagement through tools for argumentation. In: Computational Models of Argument: Proceedings of COMMA 2008, Toulouse, France, 28–30 May 2008. pp. 116–127 (2008). http://www.booksonline.iospress.nl/Content/View.aspx?piid=9273
Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar argumentation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS, vol. 3571, pp. 378–389. Springer, Heidelberg (2005). doi:10.1007/11518655_33
Conklin, J., Selvin, A.M., Shum, S.B., Sierhuis, M.: Facilitated hypertext for collective sensemaking: 15 years on from gIBIS. In: Proceedings of the 12th ACM Conference on Hypertext and Hypermedia, pp. 123–124 (2001). http://doi.acm.org/10.1145/504216.504246
Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995). http://dx.doi.org/10.1016/0004-3702(94)00041-X
Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted argument systems: basic definitions, algorithms, and complexity results. Artif. Intell. 175(2), 457–486 (2011). https://doi.org/10.1016/j.artint.2010.09.005
Fishkin, J.S., Luskin, R.C., Jowell, R.: Deliberative polling and public consultation. Parliam. Aff. 53(4), 657–666 (2000)
Ganzer-Ripoll, J., López-Sánchez, M., Rodriguez-Aguilar, J.A.: A multi-agent argumentation framework to support collective reasoning. In: Aydoğan, R., Baarslag, T., Gerding, E., Jonker, C.M., Julian, V., Sanchez-Anguix, V. (eds.) COREDEMA 2016. LNCS, vol. 10238, pp. 100–117. Springer, Cham (2017). doi:10.1007/978-3-319-57285-7_7
Gordon, T.F., Prakken, H., Walton, D.: The Carneades model of argument and burden of proof. Artif. Intell. 171(10–15), 875–896 (2007). http://dx.doi.org/10.1016/j.artint.2007.04.010
Gordon, T.F., Richter, G.: Discourse support systems for deliberative democracy. In: Traunmüller, R., Lenk, K. (eds.) EGOV 2002. LNCS, vol. 2456, pp. 248–255. Springer, Heidelberg (2002). doi:10.1007/978-3-540-46138-8_40
Krauthoff, T., Baurmann, M., Betz, G., Mauve, M.: Dialog-based online argumentation. In: Computational Models of Argument - Proceedings of COMMA 2016, Potsdam, Germany, 12–16 September 2016, pp. 33–40 (2016). http://dx.doi.org/10.3233/978-1-61499-686-6-33
Kunz, W., Rittel, H.W.: Issues as Elements of Information Systems, vol. 131. Institute of Urban and Regional Development, University of California Berkeley (1970)
Leite, J., Martins, J.: Social abstract argumentation. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011, pp. 2287–2292 (2011). http://ijcai.org/papers11/Papers/IJCAI11-381.pdf
Loukis, E., Xenakis, A., Tseperli, N.: Using argument visualization to enhance e-participation in the legislation formation process. In: Macintosh, A., Tambouris, E. (eds.) ePart 2009. LNCS, vol. 5694, pp. 125–138. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03781-8_12
Luna, G.D.I., López-López, A., Pérez, J.: Predicting preferences of voters from opinion polls by machine learning and game theory. Res. Comput. Sci. 77, 121–131 (2014). http://rcs.cic.ipn.mx/2014_77/Predicting%20Preferences%20of%20Voters%20from%20Opinion%20Polls%20by%20Machine%20Learning%20and%20Game%20Theory.pdf
Mouffe, C.: Deliberative democracy or agonistic pluralism? Soc. Res. 3, 745–758 (1999)
Patkos, T., Bikakis, A., Flouris, G.: A multi-aspect evaluation framework for comments on the social web. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, Cape Town, South Africa, 25–29 April 2016, pp. 593–596 (2016). http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12885
Rago, A., Toni, F., Aurisicchio, M., Baroni, P.: Discontinuity-free decision support with quantitative argumentation debates. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, Cape Town, South Africa, 25–29 April 2016, pp. 63–73 (2016). http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12874
Simari, G.R., Rahwan, I. (eds.): Argumentation in Artificial Intelligence. Springer, Heidelberg (2009)
Thapen, N.A., Ghanem, M.M.: Towards passive political opinion polling using Twitter. In: Proceedings of the BCS SGAI Workshop on Social Media Analysis 2013 Co-Located with 33rd Annual International Conference of the British Computer Society’s Specialist Group on Artificial Intelligence (BCS SGAI 2013), Cambridge, UK, 10 December 2013, pp. 19–34 (2013). http://ceur-ws.org/Vol-1110/paper2.pdf
Zhu, J., Wang, H., Zhu, M., Tsou, B.K., Ma, M.Y.: Aspect-based opinion polling from customer reviews. IEEE Trans. Affect. Comput. 2(1), 37–49 (2011). http://dx.doi.org/10.1109/T-AFFC.2011.2
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Rago, A., Toni, F. (2017). Quantitative Argumentation Debates with Votes for Opinion Polling. In: An, B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds) PRIMA 2017: Principles and Practice of Multi-Agent Systems. PRIMA 2017. Lecture Notes in Computer Science(), vol 10621. Springer, Cham. https://doi.org/10.1007/978-3-319-69131-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-69131-2_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69130-5
Online ISBN: 978-3-319-69131-2
eBook Packages: Computer ScienceComputer Science (R0)