Skip to main content

Quantitative Argumentation Debates with Votes for Opinion Polling

Part of the Lecture Notes in Computer Science book series (LNAI,volume 10621)


Opinion polls are used in a variety of settings to assess the opinions of a population, but they mostly conceal the reasoning behind these opinions. Argumentation, as understood in AI, can be used to evaluate opinions in dialectical exchanges, transparently articulating the reasoning behind the opinions. We give a method integrating argumentation within opinion polling to empower voters to add new statements that render their opinions in the polls individually rational while at the same time justifying them. We then show how these poll results can be amalgamated to give a collectively rational set of voters in an argumentation framework. Our method relies upon Quantitative Argumentation Debate for Voting (QuAD-V) frameworks, which extend QuAD frameworks (a form of bipolar argumentation frameworks in which arguments have an intrinsic strength) with votes expressing individuals’ opinions on arguments.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. 1.

  2. 2.

  3. 3.

  4. 4.

  5. 5.

  6. 6.

  7. 7.

  8. 8.

  9. 9.

  10. 10.

    This requirement is imposed without loss of generality (see [1]).

  11. 11.

    From here onwards, we give only the components of \(\mathcal {Q}_{j\,+\,1}^{u_{i}}\) different to those in \(\mathcal {Q}_{j}^{u_{i}}\).

  12. 12.

    Note that, as we state at the beginning of Sect. 7, users may change their votes on these “unseen” arguments if multiple runs of the process depicted in Fig. 2 occur. We leave the study of multiple runs to future work.


  1. Baroni, P., Romano, M., Toni, F., Aurisicchio, M., Bertanza, G.: Automatic evaluation of design alternatives with quantitative argumentation. Argum. Comput. 6(1), 24–49 (2015).

    CrossRef  MATH  Google Scholar 

  2. Bessette, J.: Deliberative democracy: the majority principle in Republican government. How Democr. Const. 102, 109–111 (1980)

    Google Scholar 

  3. Buckingham-Shum, S.: Cohere: towards web 2.0 argumentation. In: Computational Models of Argument: Proceedings of COMMA 2008, Toulouse, France, 28–30 May 2008, pp. 97–108 (2008).

  4. Caminada, M.W.A., Gabbay, D.M.: A logical account of formal argumentation. Studia Log. 93(2–3), 109–145 (2009).

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. Cartwright, D., Atkinson, K.: Political engagement through tools for argumentation. In: Computational Models of Argument: Proceedings of COMMA 2008, Toulouse, France, 28–30 May 2008. pp. 116–127 (2008).

  6. Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar argumentation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS, vol. 3571, pp. 378–389. Springer, Heidelberg (2005). doi:10.1007/11518655_33

    CrossRef  Google Scholar 

  7. Conklin, J., Selvin, A.M., Shum, S.B., Sierhuis, M.: Facilitated hypertext for collective sensemaking: 15 years on from gIBIS. In: Proceedings of the 12th ACM Conference on Hypertext and Hypermedia, pp. 123–124 (2001).

  8. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995).

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted argument systems: basic definitions, algorithms, and complexity results. Artif. Intell. 175(2), 457–486 (2011).

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Fishkin, J.S., Luskin, R.C., Jowell, R.: Deliberative polling and public consultation. Parliam. Aff. 53(4), 657–666 (2000)

    CrossRef  Google Scholar 

  11. Ganzer-Ripoll, J., López-Sánchez, M., Rodriguez-Aguilar, J.A.: A multi-agent argumentation framework to support collective reasoning. In: Aydoğan, R., Baarslag, T., Gerding, E., Jonker, C.M., Julian, V., Sanchez-Anguix, V. (eds.) COREDEMA 2016. LNCS, vol. 10238, pp. 100–117. Springer, Cham (2017). doi:10.1007/978-3-319-57285-7_7

    CrossRef  Google Scholar 

  12. Gordon, T.F., Prakken, H., Walton, D.: The Carneades model of argument and burden of proof. Artif. Intell. 171(10–15), 875–896 (2007).

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Gordon, T.F., Richter, G.: Discourse support systems for deliberative democracy. In: Traunmüller, R., Lenk, K. (eds.) EGOV 2002. LNCS, vol. 2456, pp. 248–255. Springer, Heidelberg (2002). doi:10.1007/978-3-540-46138-8_40

    CrossRef  Google Scholar 

  14. Krauthoff, T., Baurmann, M., Betz, G., Mauve, M.: Dialog-based online argumentation. In: Computational Models of Argument - Proceedings of COMMA 2016, Potsdam, Germany, 12–16 September 2016, pp. 33–40 (2016).

  15. Kunz, W., Rittel, H.W.: Issues as Elements of Information Systems, vol. 131. Institute of Urban and Regional Development, University of California Berkeley (1970)

    Google Scholar 

  16. Leite, J., Martins, J.: Social abstract argumentation. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011, pp. 2287–2292 (2011).

  17. Loukis, E., Xenakis, A., Tseperli, N.: Using argument visualization to enhance e-participation in the legislation formation process. In: Macintosh, A., Tambouris, E. (eds.) ePart 2009. LNCS, vol. 5694, pp. 125–138. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03781-8_12

    CrossRef  Google Scholar 

  18. Luna, G.D.I., López-López, A., Pérez, J.: Predicting preferences of voters from opinion polls by machine learning and game theory. Res. Comput. Sci. 77, 121–131 (2014).

  19. Mouffe, C.: Deliberative democracy or agonistic pluralism? Soc. Res. 3, 745–758 (1999)

    Google Scholar 

  20. Patkos, T., Bikakis, A., Flouris, G.: A multi-aspect evaluation framework for comments on the social web. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, Cape Town, South Africa, 25–29 April 2016, pp. 593–596 (2016).

  21. Rago, A., Toni, F., Aurisicchio, M., Baroni, P.: Discontinuity-free decision support with quantitative argumentation debates. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, Cape Town, South Africa, 25–29 April 2016, pp. 63–73 (2016).

  22. Simari, G.R., Rahwan, I. (eds.): Argumentation in Artificial Intelligence. Springer, Heidelberg (2009)

    Google Scholar 

  23. Thapen, N.A., Ghanem, M.M.: Towards passive political opinion polling using Twitter. In: Proceedings of the BCS SGAI Workshop on Social Media Analysis 2013 Co-Located with 33rd Annual International Conference of the British Computer Society’s Specialist Group on Artificial Intelligence (BCS SGAI 2013), Cambridge, UK, 10 December 2013, pp. 19–34 (2013).

  24. Zhu, J., Wang, H., Zhu, M., Tsou, B.K., Ma, M.Y.: Aspect-based opinion polling from customer reviews. IEEE Trans. Affect. Comput. 2(1), 37–49 (2011).

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Antonio Rago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rago, A., Toni, F. (2017). Quantitative Argumentation Debates with Votes for Opinion Polling. In: An, B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds) PRIMA 2017: Principles and Practice of Multi-Agent Systems. PRIMA 2017. Lecture Notes in Computer Science(), vol 10621. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69130-5

  • Online ISBN: 978-3-319-69131-2

  • eBook Packages: Computer ScienceComputer Science (R0)