Advertisement

Towards a Generic Multi-agent Approach for Medical Image Segmentation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10621)

Abstract

Medical image segmentation is a difficult task, essentially due to the inherent complexity of human body structures and the acquisition methods of this kind of images. Manual segmentation of medical images requires advance radiological expertize and is also very time-consuming. Several methods have been developed to automatize medical image segmentation, including multi-agent approaches. In this paper, we propose a new multi-agent approach based on a set of autonomous and interactive agents that integrates an enhanced region growing algorithm. It does not require any prior knowledge. This approach was implemented and experiments were performed on brain MRI simulated images and the obtained results are promising.

Keywords

Medical images Segmentation Multi-agent systems Interaction Region growing algorithm 

References

  1. 1.
    Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)CrossRefGoogle Scholar
  2. 2.
    Albouy-Kissi, A., Cormier, S., Tranquart, F.: Perfusion quantification of contrast-enhanced ultrasound images based on coherence enhancing diffusion and competitive clustering. In: 2012 19th IEEE International Conference on Image Processing (ICIP), pp. 2321–2324. IEEE (2012)Google Scholar
  3. 3.
    Benamrane, N., Nassane, S.: Medical image segmentation by a multi-agent system approach. In: Petta, P., Müller, J.P., Klusch, M., Georgeff, M. (eds.) MATES 2007. LNCS, vol. 4687, pp. 49–60. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74949-3_5 CrossRefGoogle Scholar
  4. 4.
    Chakraborty, S., Gupta, S.: Medical application using multi agent system-a literature survey. J. Eng. Res. Appl. 4(2), 528–546 (2014)Google Scholar
  5. 5.
    Chen, C.H.: Handbook of Pattern Recognition and Computer Vision. World Scientific, Singapore (2015)Google Scholar
  6. 6.
    Chitsaz, M., Woo, C.S.: Medical image segmentation using a multi-agent system approach. Int. Arab J. Inf. Technol. 10(3), 222–229 (2013)Google Scholar
  7. 7.
    Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., Evans, A.C.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imaging 17(3), 463–468 (1998)CrossRefGoogle Scholar
  8. 8.
    Daugman, J.: How iris recognition works. IEEE Trans. Circ. Syst. Video Technol. 14(1), 21–30 (2004)CrossRefGoogle Scholar
  9. 9.
    Djemame, S., Nekkache, M., Batouche, M.: A multi-agent system for image segmentation a bio-inpired approach. In: Proceedings of the Third international conference on Innovation and Information and Communication Technology, p. 17. British Computer Society (2009)Google Scholar
  10. 10.
    Duchesnay, E., Montois, J.J., Jacquelet, Y.: Cooperative agents society organized as an irregular pyramid: a mammography segmentation application. Pattern Recogn. Lett. 24(14), 2435–2445 (2003)CrossRefGoogle Scholar
  11. 11.
    Duncan, J.S., Ayache, N.: Medical image analysis: progress over two decades and the challenges ahead. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 85–106 (2000)CrossRefGoogle Scholar
  12. 12.
    Elnakib, A., Gimel’farb, G., Suri, J.S., El-Baz, A.: Medical image segmentation: a brief survey. In: El-Baz, A., Acharya, U.R., Laine, A., Suri, J. (eds.) Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, pp. 1–39. Springer, New York (2011). doi: 10.1007/978-1-4419-8204-9_1 Google Scholar
  13. 13.
    Germond, L., Dojat, M., Taylor, C., Garbay, C.: A cooperative framework for segmentation of MRI brain scans. Artif. Intell. Med. 20(1), 77–93 (2000)CrossRefGoogle Scholar
  14. 14.
    Haroun, R., Boumghar, F., Hassas, S., Hamami, L.: A massive multi-agent system for brain mri segmentation. In: Ishida, T., Gasser, L., Nakashima, H. (eds.) MMAS 2004. LNCS, vol. 3446, pp. 174–186. Springer, Heidelberg (2005). doi: 10.1007/11512073_13 CrossRefGoogle Scholar
  15. 15.
    He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)CrossRefGoogle Scholar
  16. 16.
    Held, K., Kops, E.R., Krause, B.J., Wells, W.M., Kikinis, R., Muller-Gartner, H.W.: Markov random field segmentation of brain mr images. IEEE Trans. Med. Imaging 16(6), 878–886 (1997)CrossRefGoogle Scholar
  17. 17.
    Jenkinson, M., Pechaud, M., Smith, S.: Bet2: Mr-based estimation of brain, skull and scalp surfaces. In: Eleventh annual meeting of the organization for human brain mapping, Toronto, vol. 17, p. 167 (2005)Google Scholar
  18. 18.
    Kupinski, M.A., Giger, M.L.: Automated seeded lesion segmentation on digital mammograms. IEEE Trans. Med. Imaging 17(4), 510–517 (1998)CrossRefGoogle Scholar
  19. 19.
    Liu, J., Tang, Y.Y.: Adaptive image segmentation with distributed behavior-based agents. IEEE Trans. Pattern Anal. Mach. Intell. 21(6), 544–551 (2002)MathSciNetGoogle Scholar
  20. 20.
    Ma, Z., Tavares, J.M.R., Renato, M., Jorge, N.: A review on the current segmentation algorithms for medical images. In: IMAGAPP, pp. 135–140 (2009)Google Scholar
  21. 21.
    McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. Med. Image Anal. 1(2), 91–108 (1996)CrossRefGoogle Scholar
  22. 22.
    Melkemi, K.E., Foufou, S.: Fuzzy distributed genetic approaches for image segmentation. CIT. J. Comput. Inf. Technol. 18(3), 221–231 (2010)CrossRefGoogle Scholar
  23. 23.
    Mery, D., Filbert, D.: Automated flaw detection in aluminum castings based on the tracking of potential defects in a radioscopic image sequence. IEEE Trans. Robot. Autom. 18(6), 890–901 (2002)CrossRefGoogle Scholar
  24. 24.
    Mohamed, M., Gader, P.: Handwritten word recognition using segmentation-free hidden Markov modeling and segmentation-based dynamic programming techniques. IEEE Trans. Pattern Anal. Mach. Intell. 18(5), 548–554 (1996)CrossRefGoogle Scholar
  25. 25.
    Mohammed, R., Said, A.: An adaptative multi-agent system approach for image segmentation. Int. J. Comput. Appl. 51(12), 21–26 (2012)Google Scholar
  26. 26.
    Moussa, R., Beurton-Aimar, M., Desbarats, P.: On the use of social agents for image segmentation. In: International Conference on complex systems and applications (ICCSA) (2009)Google Scholar
  27. 27.
    Oliver, N.M., Rosario, B., Pentland, A.P.: A Bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000)CrossRefGoogle Scholar
  28. 28.
    Pereira, C., Veiga, D., Mahdjoub, J., Guessoum, Z., Gonçalves, L., Ferreira, M., Monteiro, J.: Using a multi-agent system approach for microaneurysm detection in fundus images. Artif. Intell. Med. 60(3), 179–188 (2014)CrossRefGoogle Scholar
  29. 29.
    Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation 1. Annual Rev. Biomed. Eng. 2(1), 315–337 (2000)CrossRefGoogle Scholar
  30. 30.
    Pohle, R., Toennies, K.D.: Segmentation of medical images using adaptive region growing. In: Proceedings of International Society for Optics and Photonics, Medical Imaging, pp. 1337–1346 (2001)Google Scholar
  31. 31.
    Richard, N., Dojat, M., Garbay, C.: Automated segmentation of human brain MR images using a multi-agent approach. Artif. Intell. Med. 30(2), 153–176 (2004)CrossRefGoogle Scholar
  32. 32.
    Richard, N., Dojat, M., Garbay, C.: Distributed Markovian segmentation: Application to mr brain scans. Pattern Recogn. 40(12), 3467–3480 (2007)CrossRefzbMATHGoogle Scholar
  33. 33.
    Smith, R.G.: The contract net protocol: high-level communication and control in a distributed problem solver. IEEE Trans. Comput. 29(12), 1104–1113 (1980)CrossRefGoogle Scholar
  34. 34.
    Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 246–252. IEEE (1999)Google Scholar
  35. 35.
    Xu, M., Luk, W., Cutler, P., Digby, W.: Local threshold for segmented attenuation correction of pet imaging of the thorax. IEEE Trans. Nucl. Sci. 41(4), 1532–1537 (1994)CrossRefGoogle Scholar
  36. 36.
    Yazdani, S., Yusof, R., Karimian, A., Riazi, A.H., Bennamoun, M.: a unified framework for brain segmentation in MR images. Comput. Math. Methods Med. 2015, 1–17 (2015). doi: 10.1155/2015/829893. Article ID 829893CrossRefGoogle Scholar
  37. 37.
    Zijdenbos, A.P., Dawant, B.M., Margolin, R.A., Palmer, A.C.: Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans. Med. Imaging 13(4), 716–724 (1994)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.CReSTIC, Université de Reims Champagne ArdenneReimsFrance
  2. 2.LIMOSE Laboratory, Computer Science Department, Faculty of SciencesUniversity M’Hamed BougaraBoumerdèsAlgeria
  3. 3.LIP6, Université Paris-SorbonneParisFrance
  4. 4.Department of Computer ScienceUnivsersité 20 Août 1955SkikdaAlgeria

Personalised recommendations