Non-Saccharomyces (and Bacteria) Yeasts That Produce Ethanol

  • Graham G. Stewart
Chapter
Part of the The Yeast Handbook book series (YEASTHDB)

Abstract

In excess of a thousand unique yeast species have been identified, and many of them have been characterized (to a lesser or greater extent). Ninety percent (and more) of the fermentation ethanol produced globally employs species of the genus Saccharomyces (predominantly S. cerevisiae and S. pastorianus). However, there are a number of non-Saccharomyces yeast species that can produce ethanol (also called nonconventional yeast species). Nonconventional yeasts are a large and barely exploited resource of yeast biodiversity. Many of these nonconventional yeast species exhibit industrially relevant traits such as an ability to utilize complex substrates, nutrient tolerance against stresses and fermentation inhibition. The evolution of most of these yeast species was independent of Saccharomyces spp. Many of them possess novel and unique mechanisms that are not present in Saccharomyces yeasts. Most of them have been characterized as spoilage yeasts because they have been isolated from contaminated foods and beverages. Yeast species that are included in this category are Schizosaccharomyces pombe, Kluyveromyces marxianus, Schwanniomyces occidentalis, Brettanomyces bruxcellensis, Pichia stipitis, Pachysolen tannophilus and Torulaspora delbrueckii.

References

  1. Abarca D, Fernandez-Lobato M, Del Poso L, Jimenez A (1991) Isolation of a new gene (SWA2) encoding a new α-amylase Swanniomyces occidentalis and its expression in Saccharomyces cerevisiae. FEBS Lett 279:41–44PubMedCrossRefGoogle Scholar
  2. Abdel-Banat BMA, Hoshida H, Ano A, Nonklang S, Akada R (2010) High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol 85:861–867PubMedCrossRefGoogle Scholar
  3. Agrawal M, Mao Z, Chen RR (2011) Adaptation yields a highly efficient xylose-fermenting Zymomonas mobilis strain. Biotechnol Bioeng 108:777–785PubMedCrossRefGoogle Scholar
  4. Albertin W, Chasseriaud L, Comte G, Panfili A, Delcamp A, Salin F, Marullo P, Bely M (2014) Winemaking and bioprocesses strongly shaped the genetic diversity of the ubiquitous yeast Torulaspora delbrueckii. PLoS One:e94246Google Scholar
  5. Barnett JA (1992) Some controls on oligosaccharide utilization by yeasts: the physiological basis of the Kluyver effect. FEMS Microbiol Lett 100:371–378PubMedCrossRefGoogle Scholar
  6. Baruffini E, Goffrini P, Donnini C, Lodi T (2006) Galactose transport in Kluyveromyces lactis: major role of the glucose permease Hgt1. FEMS Yeast Res 6:1235–1242PubMedCrossRefGoogle Scholar
  7. Basso RE, Alcarde AR, Portugal CB (2016) Could non-Saccharomyces yeasts contribute on innovative brewing fermentations? Food Res Int 86:112–120CrossRefGoogle Scholar
  8. Becerra M, Rodríguez-Belmonte E, Esperanza Cerdán M, González Siso MI (2004a) Engineered autolytic yeast strains secreting Kluyveromyces lactis beta-galactosidase for production of heterologous proteins in lactose media. J Biotechnol 8:131–137CrossRefGoogle Scholar
  9. Becerra M, Tarrío N, González-Siso MI, Cerdán ME (2004b) Genome-wide analysis of Kluyveromyces lactis in wild-type and rag2 mutant strains. Genome 47:970–978PubMedCrossRefGoogle Scholar
  10. Belloch C, Barrio E, García MD, Querol A (1998a) Inter- and intraspecific chromosome pattern variation in the yeast genus Kluyveromyces. Yeast 14:1341–1354PubMedCrossRefGoogle Scholar
  11. Belloch C, Barrio E, García MD, Querol A (1998b) Phylogenetic reconstruction of the yeast genus Kluyveromyces: restriction map analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Syst Appl Microbiol 21:266–273PubMedCrossRefGoogle Scholar
  12. Björling T, Lindman B (1989) Evaluation of xylose-fermenting yeasts for ethanol production from spent sulfite liquor. Enzyme Microb Technol 11(4):240–246CrossRefGoogle Scholar
  13. Boekhout T (2005) Biodiversity: gut feeling for yeasts. Nature 434(7032):449–451PubMedCrossRefGoogle Scholar
  14. Boze H, Moulin G, Galzy P (1987a) A comparison of growth yields obtained from Schwanniomyces castellii and an alcohol dehydrogenase mutant. Biotechnol Lett 9:461–466CrossRefGoogle Scholar
  15. Boze H, Moulin G, Galzy P (1987b) Influence of culture conditions on the yield and amylase biosynthesis in continuous culture by Schwanniomyces castellii. Arch Microbiol 148:162–166CrossRefGoogle Scholar
  16. Boze H, Guyot JB, Moulin G, Galzy B (1989) Isolation and characterization of a derepressed mutant of Schwanniomyces castellii for amylase production. Appl Microbiol Biotechnol 31:366CrossRefGoogle Scholar
  17. Breunig KD, Bolotin-Fukuhara M, Bianchi MM, Bourgarel D, Falcone C, Ferrero II, Frontali L, Goffrini P, Krijger JJ, Mazzoni C, Milkowski C, Steensma HY, Wésolowski-Louvel M, Zeeman AM (2000) Regulation of primary carbon metabolism in Kluyveromyces lactis. Enzym Microb Technol 26:771–780CrossRefGoogle Scholar
  18. Calleja GB, Zuker M, Johnson BF, Yoo BY (1980) Analyses of fission scars as permanent records of cell division in Schizosaccharomyces pombe. J Theor Biol 84:523–544PubMedCrossRefGoogle Scholar
  19. Calleja GB, Levy-Rick S, Lusena CV, Moranelli F, Nasim A (1982) Direct and quantitative conversion of starch to ethanol by the yeast Schwanniomyces alluvius. Biotechnol Lett 4:543–546CrossRefGoogle Scholar
  20. Calleja GB, Levy-Rick S, Moranelli F, Nasim A (1984) Thermosensitive export of amylases in the yeast Schwanniomyces alluvius. Plant Cell Physiol 25:757–761Google Scholar
  21. Canonico C, Agarbati A, Comitini F, Ciani M (2016) Torulaspora delbrueskii in the brewing process: a new approach to enhance bioflavour and reduce ethanol content. Food Microbiol 56:45–51PubMedCrossRefGoogle Scholar
  22. Chen RR, Wang Y, Shin H-D, Agrawal M, Mao Z (2009) Strains of Zymomonas mobilis for fermentation of biomass. US Patent Appl. No. US20090269797Google Scholar
  23. Clapp C, Portt L, Khoury C, Sheibani S, Norman G, Ebner P, Eid R, Vali H, Mandato CA, Madeo F, Greenwood MT (2012) 14-3-3 protects against stress-induced apoptosis. Cell Death Dis 3:e348PubMedPubMedCentralCrossRefGoogle Scholar
  24. Claros MG, Abarca D, Fernández-Lobato M, Jiménez A (1993) Molecular structure of the SWA2 gene encoding an AMY1-related alpha-amylase from Schwanniomyces occidentalis. Curr Genet 24:75–83PubMedCrossRefGoogle Scholar
  25. Clementi F, Rossi J (1986) Alpha-amylase and glucoamylase production by Schwanniomyces castellii. Antonie Van Leeuwenhoek 52:343–352PubMedCrossRefGoogle Scholar
  26. Coenen TM, Bertens AM, de Hoog SC, Verspeek-Rip CM (2000) Safety evaluation of a lactase enzyme preparation derived from Kluyveromyces lactis. Food Chem Toxicol 38:671–677PubMedCrossRefGoogle Scholar
  27. Colussi PA, Taron CH (2005) Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis. Appl Environ Microbiol 71:7092–7098PubMedPubMedCentralCrossRefGoogle Scholar
  28. Colussi PA, Specht CA, Taron CH (2005) Characterization of a nucleus-encoded chitinase from the yeast Kluyveromyces lactis. Appl Environ Microbiol 71:2862–2869PubMedPubMedCentralCrossRefGoogle Scholar
  29. Crichton PG, Affourtit C, Moore AL (2007) Identification of a mitochondrial alcohol dehydrogenase in Schizosaccharomyces pombe: new insights into energy metabolism. Biochem J 401:459–464PubMedCrossRefGoogle Scholar
  30. De Moreas LMPS, Astolfi-Filhole S, Oliver SG (1995) Development of yeast strains for the efficient utilization of starch: evaluation of constructs that express amylase and glucoamylase separately or as bifunctional fusion proteins. Appl Microbiol Biotechnol 43:1067–1076CrossRefGoogle Scholar
  31. De Mot R, Verachtert H (1985) Purification and characterization of extracellular amylolytic enzymes from the yeast Filobasidium capsuligenum. Appl Environ Microbiol 50:1474–1482PubMedPubMedCentralGoogle Scholar
  32. De Mot R, Andries K, Verachtert H (1984) Production of extracellular debranching activity by amylolytic yeasts. Biotechnol Lett 6:581–586CrossRefGoogle Scholar
  33. De Mot R, Van Dijck K, Donkers A, Verachtert H (1985a) Potentialities and limitations of direct alcoholic fermentations of starchy material with amyloytic yeast. Appl Microbiol Biotechnol 22:222–226CrossRefGoogle Scholar
  34. De Mot R, Van Oudendijck E, Verachtert H (1985b) Purification and characterization of an extracellular glucoamylase from the yeast Candida tsukubaensis CBS 6389. Antonie Van Leeuwenhoek 51:275–287PubMedCrossRefGoogle Scholar
  35. Deanda K, Zhang M, Eddy C, Picataggio S (1996) Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microbiol 62:4465–4470PubMedPubMedCentralGoogle Scholar
  36. Dohmen RJ, Strasser AW, Dahlems UM, Hollenberg CP (1990) Cloning of the Schwanniomyces occidentalis glucoamylase gene (GAM1) and its expression in Saccharomyces cerevisiae. Gene 95:111–121PubMedCrossRefGoogle Scholar
  37. Domingues L, Guimarães PM, Oliveira C (2010) Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation. Bioeng Bugs 1:164–171PubMedCrossRefGoogle Scholar
  38. Doran-Peterson J, Cook DM, Brandon SK (2008) Microbial conversion of sugars from plant biomass to lactic acid or ethanol. Plant J 54:582–592PubMedCrossRefGoogle Scholar
  39. Dowhanick TM, Russell I, Scherer SW, Stewart GG, Seligy VL (1990) Expression and regulation of glucoamylase from the yeast Schwanniomyces castellii. J Bacteriol 172:2360–2366PubMedPubMedCentralCrossRefGoogle Scholar
  40. Dujon B (2010) Yeast evolutionary genomics. Nat Rev Genet 11:512–524PubMedCrossRefGoogle Scholar
  41. Eksteen JM, Steyn AJ, van Rensburg P, Cordero Otero RR, Pretorius IS (2003a) Cloning and characterization of a second alpha-amylase gene (LKA2) from Lipomyces kononenkoae IGC4052B and its expression in Saccharomyces cerevisiae. Yeast 20:69–78PubMedCrossRefGoogle Scholar
  42. Eksteen JM, Van Rensburg P, Cordero Otero RR, Pretorius IS (2003b) Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol Bioeng 84:639–646PubMedCrossRefGoogle Scholar
  43. Erratt JA, Stewart GG (1978) Genetic and biochemical studies on yeast strains able to utilize dextrins. J Am Soc Brew Chem 36:151–161Google Scholar
  44. Erratt JA, Stewart GG (1981a) Fermentation studies using Saccharomyces diastaticus yeast strains. Dev Ind Microbiol 22:577–586Google Scholar
  45. Erratt JA, Stewart GG (1981b) Genetic and biochemical studies on glucoamylase from Saccharomyces diastaticus. In: Advances in Biotechnol. Pergamon Press, Toronto, pp 177–183CrossRefGoogle Scholar
  46. Fantes PA, Nurse P (1977) Control of cell size at division in fission yeast by a growth-modulated size control over nuclear division. Exp Cell Res 107:377–386PubMedCrossRefGoogle Scholar
  47. Ferreira JD, Phaff HJ (1959) Life cycle and nuclear behaviour of a species of the yeast genus Schwanniomyces. J Bacteriol 78:352–361PubMedPubMedCentralGoogle Scholar
  48. Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–345PubMedCrossRefGoogle Scholar
  49. Forsburg SL, Rhind N (2006) Basic methods for fission yeast. Yeast 23:173–183PubMedPubMedCentralCrossRefGoogle Scholar
  50. Fujii M, Kawamura Y (1985) Synergistic action of α-amylase and glucoamylase on hydrolysis of starch. Biotechnol Bioeng 27:260–265PubMedCrossRefGoogle Scholar
  51. Fukuhara H (2003) The Kluyver effect revisited. FEMS Yeast Res 3:327–331PubMedCrossRefGoogle Scholar
  52. Fuson GB, Presley HL, Phaff HJ (1987) Deoxyribonucleic acid base sequence relatedness among members of the yeast genus Kluyveromyces. Int J Syst Bacteriol 37:371–379CrossRefGoogle Scholar
  53. Goffeau A (1996) A vintage year for yeast. Yeast 12:1603–1605PubMedCrossRefGoogle Scholar
  54. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B (1996) Life with 6000 genes. Science 274:546–547PubMedCrossRefGoogle Scholar
  55. Hagen I, Carr AM, Grallert A, Nurse P (2016) Fission yeast: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  56. Hahn-Hägerdal B, Pamment N (2004) Microbial pentose metabolism. Appl Biochem Biotechnol 113-116:1207–1209PubMedCrossRefGoogle Scholar
  57. Heinisch JJ, Buchwald U, Gottschlich A, Heppeler N, Rodicio R (2010) A tool kit for molecular genetics of Kluyveromyces lactis comprising a congenic strain series and a set of versatile vectors. FEMS Yeast Res 10:333–342PubMedCrossRefGoogle Scholar
  58. Hnatova M, Wesolowski-Louvel M, Dieppois G, Deffaud J, Lemaire M (2008) Characterization of KlGRR1 and SMS1 genes, two new elements of the glucose signaling pathway of Kluyveromyces lactis. Eukaryot Cell 7:1299–1308PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hollenberg CP, Wilhelm M (1987) New substrates for old organisms. In: Biotec I: microbiol genetic engineering and enzyme technology. Gustav Fisher, Stutgart, pp 21–31Google Scholar
  60. Hoshida H, Murakami N, Suzuki A, Tamura R, Asakawa J, Abdel-Banat BM, Nonklang S, Nakamura M, Akada R (2014) Non-homologous end joining-mediated functional marker selection for DNA cloning in the yeast Kluyveromyces marxianus. Yeast 31:29–46PubMedCrossRefGoogle Scholar
  61. Ingledew WM (1987) Schwanniomyces: a potential superyeast? Crit Rev Biotechnol 5:159–176PubMedCrossRefGoogle Scholar
  62. Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326PubMedCrossRefGoogle Scholar
  63. Jeong H, Lee D-H, Kim SH, Kim HJ, Lee K, Song JY, Kim BK, Sung BH, Park JC, Sohn JH, Koo HM, Kim JF (2012) Genome sequence of the thermotolerant yeast Kluyveromyces marxianus var. marxianus KCTC 17555. Eukaryot Cell 11:1584–1585PubMedPubMedCentralCrossRefGoogle Scholar
  64. Joachimsthal EL, Rogers PL (2000) Characterization of a high productivity recombinant strain of Zymomonas mobilis for ethanol production from glucose/xylose mixtures. Appl Biochem Biotechnol 84–86:343–356PubMedCrossRefGoogle Scholar
  65. Kegel A, Martinez P, Carter SD, Aström SU (2006) Genome wide distribution of illegitimate recombination events in Kluyveromyces lactis. Nucleic Acids Res 34:1633–1645PubMedPubMedCentralCrossRefGoogle Scholar
  66. Krijger JJ, Baumann J, Wagner M, Schulze K, Reinsch C, Klose T, Onuma OF, Simon C, Behrens SE, Breunig KD (2012) A novel, lactase-based selection and strain improvement strategy for recombinant protein expression in Kluyveromyces lactis. Microb Cell Factories 11:112CrossRefGoogle Scholar
  67. Lane MM, Burke N, Karreman R, Wolfe KH, O’Byrne CP, Morrissey JP (2011) Physiological and metabolic diversity in the yeast Kluyveromyces marxianus. Antonie Van Leeuwenhoek 100:507–519PubMedCrossRefGoogle Scholar
  68. Lee K-S, Kim J-S, Heo P, Lee K-S, Kim J-S, Heo P, Yang T-J, Sung Y-J, Cheon Y, Koo HM, Yu BJ, Seo J-H, Jin Y-S, Park JC, Kweo D-H (2013) Characterization of Saccharomyces cerevisiae promoters for heterologous gene expression in Kluyveromyces marxianus. Appl Microbiol Biotechnol 97:2029–2041PubMedCrossRefGoogle Scholar
  69. Leupold U (1950) Die verebung van homothallie und homothallie und heterothallis bei Saccharomyces pombe. CR Trav Lab Carlsberg Ser Physiol 24:381–480Google Scholar
  70. Leupold U (1993) The origin of Schizosaccharomyces pombe genetics. In: Hall MN, Linder P (eds) The early days of yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 125–128Google Scholar
  71. Limtong S, Sringiew C, Yongmanitchai W (2007) Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour Technol 98:3367–3374PubMedCrossRefGoogle Scholar
  72. Lin Z, Li WH (2011) The evolution of aerobic fermentation in Schizosaccharomyces pombe was associated with regulatory reprogramming but not nucleosome reorganization. Mol Biol Evol 28:1407–1413PubMedCrossRefGoogle Scholar
  73. Llorente B, Malpertuy A, Blandin G, Artiguenave F, Wincker P, Dujon B (2000) Genomic exploration of the hemiascomycetous yeasts: 12. Kluyveromyces marxianus var. marxianus. FEBS Lett 487:71–75PubMedCrossRefGoogle Scholar
  74. Lodder J (ed) (1984) The yeasts: a taxonomic study, 3rd edn. North Holland Publishing, AmsterdamGoogle Scholar
  75. Lomer M, Parkes G, Sanderson J (2008) Review article: lactose intolerance in clinical practice – myths and realities. Aliment Pharmacol Ther 27:93–103PubMedCrossRefGoogle Scholar
  76. Maleszka R, Schneider H (1982) Concurrent production and consumption of ethanol by cultures of Pachysolen tannophilus growing on d-xylose. Appl Environ Microbiol 44:909–912PubMedPubMedCentralGoogle Scholar
  77. Martinez LA, Naguibneva I, Lehrmann H, Vervisch A, Tchénio T, Lozano G, Harel-Bellan A (2002) Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore pathways. In: Vogt PK (ed) Proceedings of the National Academy of Sciences of the USA. The Scripps Research Institute, La Jolla, CA, p 53Google Scholar
  78. Martini AV, Martini A (1987) Taxonomic revision of the yeast genus Kluyveromyces by nuclear deoxyribonucleic acid reassociation. Int J Syst Bacteriol 44:380–385CrossRefGoogle Scholar
  79. Martorell P, Stratford M, Steels H, Fernández-Espinar MT, Querol A (2007) Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments. Int J Food Microbiol 114:234–242PubMedCrossRefGoogle Scholar
  80. Maximilian M, Meier-Dörnberg T, Jacob F, Schneiderbanger H, Haselbeck K, Zarnkow M, Hutzler M (2017) Optimization of beer fermentation with a novel brewing strain of Torulaspora delbrueckii using response surface methodology. MBAA Tech Quart 54:23–33Google Scholar
  81. Michel M, Kopecká J, Meier-Dörnberg T, Zarnkow M, Jacob F, Hutzler M (2016) Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model. Yeast 33:129–144PubMedCrossRefGoogle Scholar
  82. Mitchison JM (1957) The growth of single cells. I. Schizosaccharomyces pombe. Exp Cell Res 13:244–262PubMedCrossRefGoogle Scholar
  83. Naim HY, Niermann T, Kleinhans U, Hollenberg CP, Strasser AW (1991) Striking structural and functional similarities suggest that intestinal sucrase-isomaltase, human lysosomal alpha-glucosidase and Schwanniomyces occidentalis glucoamylase are derived from a common ancestral gene. FEBS Lett 294:109–112PubMedCrossRefGoogle Scholar
  84. Nonklang S, Abdel-Banat BMA, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, Akada R (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3–1042. Appl Environ Microbiol 74:7514–7521PubMedPubMedCentralCrossRefGoogle Scholar
  85. Novak B, Mitchison JM (1990a) CO2 production after induction synchrony of the fission yeast Schizosaccharomyces pombe: the origin and nature of entrainment. J Cell Sci 96:79–91PubMedGoogle Scholar
  86. Novak B, Mitchison JM (1990b) Change in the rate of oxygen consumption in synchronous cultures of the fission yeast Schizosaccharomyces pombe. J Cell Sci 96:429–433PubMedGoogle Scholar
  87. Oteng-Gyang K, Moulin G, Galzy P (1981) A study of amylolytic system of Schwanniomyces castelii. J Basic Microbiol 21:537–544Google Scholar
  88. Panesar PS, Kumari S, Panesar R (2010) Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Res 2010:12–27CrossRefGoogle Scholar
  89. Paradh AD (2015) Gram-negative spoilage bacteria in brewing. In: Hill AE (ed) Brewing microbiology. Woodhead Publishing, Cambridge, pp 175–194CrossRefGoogle Scholar
  90. Pecota DC, Rajgarhia V, Da Silva NA (2007) Sequential gene integration for the engineering of Kluyveromyces marxianus. J Biotechnol 127:408–416PubMedCrossRefGoogle Scholar
  91. Phaff HJ (1970) Genus 20. Schwanniomyces klocker. In: Lodder J (ed) The yeasts, a taxonomic study, 2nd edn. North-Holland Publishing, Amsterdam, pp 756–766Google Scholar
  92. Phaff HJ (1981) The species concept in yeasts: physiology, morphology, genetic and ecological parameters. In: Stewart GG, Russell I (eds) Current developments in yeast research. Pergamon Press, Toronto, pp 635–643Google Scholar
  93. Phaff HJ, Miller MW, Mrak EM (1966) The life of yeasts. Harvard University Press, Cambridge, MAGoogle Scholar
  94. Poinsot C, Moulin G, Claisse M, Galzy P (1987) Isolation and characterization of a mutant of Schwanniomyces castellii with altered respiration. Antonie Van Leeuwenhoek 53:65–70PubMedCrossRefGoogle Scholar
  95. Prazeres AR, Carvalho F, Rivas J (2012) Cheese whey management: a review. J Environ Manag 110:48–68CrossRefGoogle Scholar
  96. Price CW, Fuson GB, Phaff HJ (1978) Genome comparison in yeast systematics: delimitation of species within the genera Schwanniomyces, Saccharomyces, Debaryomyces, and Pichia. Am Soc Microbiol 42:161–193Google Scholar
  97. Radecka D, Mukherjee V, Mateo RQ, Stojiljkovic M, Foulquié-Moreno MR, Thevelein JM (2015) Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res 15 pii: fov053Google Scholar
  98. Rigamonte TA, Silveira WB, Fietto LG, Castro IM, Breunig KD, Passos FM (2011) Restricted sugar uptake by sugar-induced internalization of the yeast lactose/galactose permease Lac12. FEMS Yeast Res 11:243–251PubMedCrossRefGoogle Scholar
  99. Rives J, Fernandez-Rodriguez I, Rieradevall J, Gabarrell X (2011) Environmental analysis of the production of natural cork stoppers in Southern Europe (Catalonia e Spain). J Clean Prod 19:259–271CrossRefGoogle Scholar
  100. Rogers P, Lee K, Skotnicki M, Tribe D (1982) Microbial reactions: ethanol Production by Zymomonas mobilis. Springer, New York, Berlin, pp 37–84CrossRefGoogle Scholar
  101. Rossi J, Clementi F (1985) Protein production by Schwanniomyces castelli on starchy substrates, in liquid and solid cultivation. J Food Technol 20:318–330Google Scholar
  102. Rouwenhorst RJ, Visser LE, Baan AA, Scheffers WA, Van Dijken JP (1988) Production, distribution, and kinetic properties of inulinase in continuous cultures of Kluyveromyces marxianus CBS 6556. Appl Environ Microbiol 54:1131–1137PubMedPubMedCentralGoogle Scholar
  103. Russell I, Stewart GG (2014) Whisky: technology production and marketing, 2nd edn. Academic Press (Elsevier), Boston, MAGoogle Scholar
  104. Saliola M, Shuster JR, Falcone C (1990) The alcohol dehydrogenase system in the yeast, Kluyveromyces lactis. Yeast 6:193–204PubMedCrossRefGoogle Scholar
  105. Schneider H, Maleszka R, Neirinck LG, Veliky IA, Wang PY, Chan YK (1983) Ethanol production from d-xylose and several other carbohydrates by Pachysolen tannophilus and other yeasts. In: Fiechter A (ed) Advances in biochemical engineering biotechnology. Springer, BerlinGoogle Scholar
  106. Seyis I, and Aksoz N (2004) Production of lactase by Trichoderma sp. Food Tech. Biotechnol 42:121–124Google Scholar
  107. Sicard D, Legras JL (2011) Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex. C R Biol 334:229–236PubMedCrossRefGoogle Scholar
  108. Sills AM, Stewart GG (1982) Production of amylolytic enzymes by several yeast species. J Inst Brew 88:313–316CrossRefGoogle Scholar
  109. Sills AM, Sauder ME, Stewart GG (1983) Amylase activity in certain yeasts and a fungal species (Schwanniomyces castellii, Endomycopsis fibuligera, Aspergillus oryzae). Dev Ind Microbiol 24:295–303Google Scholar
  110. Sills AM, Zygora PSJ, Stewart GG (1984a) Characterization of Schwanniomyces casteliii mutants with increased productivity of amylases. Appl Microbiol Biotechnol 20:124–128CrossRefGoogle Scholar
  111. Sills AM, Sauder ME, Stewart GG (1984b) Isolation and characterization of the amylolytic system of Schwanniomyces castellii. J Inst Brew 90:311–314CrossRefGoogle Scholar
  112. Sills AM, Panchal CJ, Russell I, Stewart GG (1987) Production of amylolytic enzymes by yeasts and their utilization in brewing. Crit Rev Biotechnol 5:105–115PubMedCrossRefGoogle Scholar
  113. Slinger PJ, Bothast RJ, van Cauwenberge JE, Curtzman CP (1982) Conversion of d-xylose to ethanol by the yeast Pachysolen tannophilus. Biotechnol Bioeng 24:371–384CrossRefGoogle Scholar
  114. Snoek IS, Steensma HY (2006) Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. FEMS Yeast Res 6:393–403PubMedCrossRefGoogle Scholar
  115. Souciet JL, Dujon B, Gaillardin C, Johnston M, Baret PV, Cliften P, Sherman DJ, Weissenbach J, Westhof E, Wincker P, Jubin C, Poulain J, Barbe V, Ségurens B, Artiguenave F, Anthouard V, Vacherie B, Val ME, Fulton RS, Minx P, Wilson R, Durrens P, Jean G, Marck C, Martin T, Nikolski M, Rolland T, Seret ML, Casarégola S, Despons L, Fairhead C, Fischer G, Lafontaine I, Leh V, Lemaire M, de Montigny J, Neuvéglise C, Thierry A, Blanc-Lenfle I, Bleykasten C, Diffels J, Fritsch E, Frangeul L, Goëffon A, Jauniaux N, Kachouri-Lafond R, Payen C, Potier S, Pribylova L, Ozanne C, Richard GF, Sacerdot C, Straub ML, Talla E (2009) Comparative genomics of protoploid Saccharomycetaceae. Genome Res 19:1696–1709PubMedPubMedCentralCrossRefGoogle Scholar
  116. Spencer JRT, Spencer DM (1997) Taxonomy: the names of the yeasts. In: Spencer JRT, Spencer DM (eds) Natural and artificial habitats. Springer, Berlin, pp 11–32CrossRefGoogle Scholar
  117. Spencer-Martins I, van Uden N (1979) Extracellular amylolytic system of the yeast Lipomyces kononenkoae. Eur J Appl Microbiol Biotechnol 6:241–250CrossRefGoogle Scholar
  118. Spencer-Martins I, van Uden N (1982) The temperature profile of growth, death and yield of the starch-converting yeast Lipomyces kononenkoae. J Basic Microbiol 22:503–505Google Scholar
  119. Steensels J, Verstrepen KJ (2014) Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations. Annu Rev Microbiol 68:61–80PubMedCrossRefGoogle Scholar
  120. Stewart GG (1987) The biotechnological relevance of starch-degrading enzymes. CRC Crit Rev Biotechnol 5:89–94CrossRefGoogle Scholar
  121. Teoh AL, Heard G, Cox J (2004) Yeast ecology of Kombucha fermentation. Int J Food Microbiol 95:119–126PubMedCrossRefGoogle Scholar
  122. Touzi A, Prebois JP, Moulin G, Deschamps F, Galzy P (1982) Production of food yeast from starchy substrates. Eur J Appl Microbial Biotechnol 15:232–236CrossRefGoogle Scholar
  123. Tubb RS, Liljestrom PL, Torkkeli T, Korhola M (1986) In: Priest EG, Campbell I (eds) Proc 2nd Aviemore conf on malting, brewing and distilling. Institute of Brewing, London, pp 298–306Google Scholar
  124. van den Berg JA, van den Laken KJ, van Ooyen AJ, Renniers TC, Rietveld K, Schaap A, Brake AJ, Bishop RJ, Schultz K, Moyer D (1990) Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Biotechnology (NY) 8:135–139Google Scholar
  125. van Ooyen AJ, Dekker P, Huang M, Olsthoorn MM, Jacobs DI, Colussi PA, Taron CH (2006) Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res 6:381–392PubMedCrossRefGoogle Scholar
  126. Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bähler J (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243PubMedCrossRefGoogle Scholar
  127. Wilson JJ, Ingledew WM (1982) Isolation and characterization of Schwanniomyces alluvius amylolytic enzymes. Appl Environ Microbiol 44:301–307PubMedPubMedCentralGoogle Scholar
  128. Winderickx J, Delay C, De Vos A, Klinger H, Pellens K, Vanhelmont T, Van Leuven F, Zabrocki P (2008) Protein folding diseases and neurodegeneration: lessons learned from yeast. Biochim Biophys Acta 1783:1381–1395PubMedCrossRefGoogle Scholar
  129. Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19:1109–1117PubMedCrossRefGoogle Scholar
  130. Wolf K (1996) Nonconventional yeasts in biotechnology. Springer, BerlinCrossRefGoogle Scholar
  131. Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, Hornsby T, Howarth S, Huckle EJ, Hunt S, Jagels K, James K, Jones L, Jones M, Leather S, McDonald S, McLean J, Mooney P, Moule S, Mungall K, Murphy L, Niblett D, Odell C, Oliver K, O’Neil S, Pearson D, Quail MA, Rabbinowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S, Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K, Taylor RG, Tivey A, Walsh S, Warren T, Whitehead S, Woodward J, Volckaert G, Aert R, Robben J, Grymonprez B, Weltjens I, Vanstreels E, Rieger M, Schäfer M, Müller-Auer S, Gabel C, Fuchs M, Düsterhöft A, Fritzc C, Holzer E, Moestl D, Hilbert H, Borzym K, Langer I, Beck A, Lehrach H, Reinhardt R, Pohl TM, Eger P, Zimmermann W, Wedler H, Wambutt R, Purnelle B, Goffeau A, Cadieu E, Dréano S, Gloux S, Lelaure V, Mottier S, Galibert F, Aves SJ, Xiang Z, Hunt C, Moore K, Hurst SM, Lucas M, Rochet M, Gaillardin C, Tallada VA, Garzon A, Thode G, Daga RR, Cruzado L, Jimenez J, Sánchez M, del Rey F, Benito J, Domínguez A, Revuelta JL, Moreno S, Armstrong J, Forsburg SL, Cerutti L, Lowe T, McCombie WR, Paulsen I, Potashkin J, Shpakovski GV, Ussery D, Barrell BG, Nurse P (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880PubMedCrossRefGoogle Scholar
  132. Wu FM, Wang TT, Hsu WH (1991) The nucleotide sequence of Schwanniomyces occidentalis alpha-amylase gene. FEMS Microbiol Lett 66:313–318PubMedGoogle Scholar
  133. Yang S, Fei Q, Zhang Y, Contreras LM, Utturkar SM, Brown SD, Himmel ME, Zhang M (2016) Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb Biotechnol 9:699–717PubMedPubMedCentralCrossRefGoogle Scholar
  134. Yarimizu T, Nonklang S, Nakamura J, Tokuda S, Nakagawa T, Lorreungsil S, Sutthikhumpha S, Pukahuta C, Kitagawa T, Nakamura M, Cha-aim K, Limtong S, Hoshida H, Akada R (2013) Identification of auxotrophic mutants of the yeast Kluyveromyces marxianus by non-homologous end joining-mediated integrative transformation with genes from Saccharomyces cerevisiae. Yeast 30:485–500PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Graham G. Stewart
    • 1
    • 2
  1. 1.International Centre for Brewing and DistillingHeriot Watt UniversityEdinburghUK
  2. 2.GGStewart AssociatesCardiff, WalesUK

Personalised recommendations