Skip to main content

Molecularizing Evolutionary Biology

  • Chapter
  • First Online:
The Darwinian Tradition in Context
  • 777 Accesses

Abstract

The encounter in the 1960s between molecular biology and evolutionary biology had short- and long-term consequences. Comparison of protein sequences suggested that evolution proceeded at a regular pace, obeying a molecular clock. It rapidly led evolutionary biologists to give neutral variations a larger role in their models. The development of genetic engineering technologies opened the door to progressive replacement of the abstract notions of gene and gene mutation hitherto used by evolutionary biologists by precise molecular descriptions. The precise structural and functional characterization of mutations assumed an increasing role and supported the introduction of a hierarchy between genes and between gene mutations that is clearly visible in evolutionary developmental biology. I will examine how far the accumulation of molecular data has challenged the Modern Synthesis established in the 1940s. In particular, different molecular mechanisms have been successively proposed to support a Lamarckian form of evolution. My conclusion will be that molecularization of evolutionary biology is still in its infancy, and that the Modern Synthesis will be replaced by a functional synthesis in which models of evolutionary biology and a description of molecular mechanisms will be intimately dovetailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baker WK (1978) A genetic framework for Drosophila development. Annu Rev Genet 12:451–470

    Article  CAS  PubMed  Google Scholar 

  • Britten RJ, Davidson EH (1969) Gene regulation for higher cells: a theory. Science 165:349–357

    Article  CAS  PubMed  Google Scholar 

  • Britten RJ, Davidson EH (1971) Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q Rev Biol 46:111–133

    Article  CAS  PubMed  Google Scholar 

  • Carroll SB (2003) Genetics and the making of Homo sapiens. Nature 422:849–857

    Article  CAS  PubMed  Google Scholar 

  • Carroll SB (2008) Evo-Devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36

    Article  CAS  PubMed  Google Scholar 

  • Cohen SR (1976) Transposable genetic elements and plasmid evolution. Nature 263:731–738

    Article  CAS  PubMed  Google Scholar 

  • Comfort NC (2001) The tangled field: Barbara McClintock’s search for the patterns of genetic control. Harvard University Press, Cambridge

    Google Scholar 

  • Davidson EH (1968) Gene activity in early development. Academic, New York

    Google Scholar 

  • Davidson EH (2006) The regulatory genome: gene regulatory networks in development and evolution. Academic, Burlington

    Google Scholar 

  • Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800

    Article  CAS  PubMed  Google Scholar 

  • Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000

    Article  CAS  PubMed  Google Scholar 

  • de Rosa R, Grenier JK, Andreeva T, Cook CE, Adoutte A, Adam M, Carroll SB, Balavoine G (1999) Hox genes in brachiopods, and priapulids and protostome evolution. Nature 399:772–776

    Article  CAS  PubMed  Google Scholar 

  • Dean AM, Thornton JW (2007) Mechanistic approaches to the study of evolution: the functional synthesis. Nat Rev Genet 8:675–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietrich MR (1994) The origins of the neutral theory of molecular evolution. J Hist Biol 27:21–59

    Article  CAS  PubMed  Google Scholar 

  • Dietrich MR (1998) Paradox and persuasion: negotiating the place of molecular evolution within evolutionary biology. J Hist Biol 31:85–111

    Article  CAS  PubMed  Google Scholar 

  • Dietrich MR (2007) Representing the object of controversy: the case of the molecular clock. Hist Philos Life Sci 29:161–176

    PubMed  Google Scholar 

  • Dobzhansky T (1973) Nothing in biology makes sense, except in the light of evolution. Am Biol Teach 35:125–129

    Article  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603

    Article  CAS  PubMed  Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman, San Francisco, pp 82–115

    Google Scholar 

  • Enard W, Przeworski M, Fisher SE, Lai SCL, Wiebe V, Kitano T et al (2002) Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418:869–872

    Article  CAS  PubMed  Google Scholar 

  • Erwin DH, Davidson EH (2009) The evolution of hierarchical gene regulatory networks. Nat Rev Genet 10:141–148

    Article  CAS  PubMed  Google Scholar 

  • Florkin M (1949) Biochemical evolution. Academic, New York

    Google Scholar 

  • Goldschmidt R (1940, 1982) The material basis of evolution. Yale University Press, New Haven

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B 205:581–598

    Article  CAS  PubMed  Google Scholar 

  • Harms MJ, Thornton JW (2014) Historical contingency and its biophysical basis in glucocorticoid receptor evolution. Nature 512:203–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob F (1977) Evolution and tinkering. Science 196:1161–1166

    Article  CAS  PubMed  Google Scholar 

  • Jacob F (1994) L’irrésistible ascension des gènes Hox. Médecine/Sciences 10:145–148

    Article  Google Scholar 

  • Jacob F, Monod J (1959) Gènes de structure et gènes de régulation dans la biosynthèse des protéines. C R Acad Sci Paris 249:1282–1284

    CAS  PubMed  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  CAS  PubMed  Google Scholar 

  • Jacob F, Monod J (1962) Sur le mode d’action des gènes et leur régulation. Pontificia Acad Sci Scripta Varia 22:89–95

    Google Scholar 

  • Kamp AF, La Rivière JWM, Verhoeven W (1959) Albert Jan Kluyver: his life and work. Interscience, New York, p 20

    Google Scholar 

  • Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang H-C, Stines AP, Georgopoulos C et al (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:209–220

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • King JL, Jukes TH (1969) Non-Darwinian evolution. Science 164:788–798

    Article  CAS  PubMed  Google Scholar 

  • King M-C, Wilson AC (1975) Evolution at two levels in bacteria and chimpanzees. Science 188:107–116

    Article  CAS  PubMed  Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    Article  CAS  PubMed  Google Scholar 

  • Luria SE, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lwoff A (1944) L’évolution Physiologique. Etudes des pertes de fonction chez les micro-organismes. Hermann, Paris

    Google Scholar 

  • MacCord K, Maienschein J (2017) Cells, development, and evolution: teeth studies at the intersection of fields. In: Delisle RG (ed) The Darwinian tradition in context: research programs in evolutionary biology. Springer, Cham, pp 289–308

    Chapter  Google Scholar 

  • Mayr E (1961) Cause and effect in biology. Science 134:1501–1506

    Article  CAS  PubMed  Google Scholar 

  • McCarthy BJ, Church RB (1970) The specificity of molecular hybridization reactions. Annu Rev Biochem 39:131–150

    Article  CAS  PubMed  Google Scholar 

  • Meyerowitz EM, Bowman JL, Brockman LL, Drews GN, Jack T, Sieburth LE, Weigel D (1991) A genetic and molecular model for flower development in Arabidopsis thaliana. Dev Suppl 1:157–167

    CAS  PubMed  Google Scholar 

  • Morange M (2009) When functional biologists propose mechanisms of evolution. J Biosci 34:373–376

    Article  PubMed  Google Scholar 

  • Morange M (2011) Evolutionary developmental biology: its roots and characteristics. Dev Biol 357:13–16

    Article  CAS  PubMed  Google Scholar 

  • Morange M (2014) Molecular hybridization: a problematic tool for the study of differentiation and development (1960–1980). J Biosci 39:29–32

    Article  PubMed  Google Scholar 

  • Morange M (2015) Reverse transcriptase and Lamarckian scenarios of evolution. J Biosci 40:3–6

    Article  PubMed  Google Scholar 

  • Morgan G (1998) Emile Zuckerkandl, Linus Pauling, and the molecular evolutionary clock, 1959–1965. J Hist Biol 31:155–178

    Article  CAS  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin

    Book  Google Scholar 

  • Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607

    Article  CAS  PubMed  Google Scholar 

  • Peluffo AE (2015) The “genetic program”: behind the genesis of an influential metaphor. Genetics 200:685–696

    Article  PubMed  PubMed Central  Google Scholar 

  • Shanahan T (2017) Selfish genes and lucky breaks: Richard Dawkins’ and Stephen Jay Gould’s: divergent Darwinian agendas. In: Delisle RG (ed) The Darwinian tradition in context: research programs in evolutionary biology. Springer, Cham, pp 11–36

    Chapter  Google Scholar 

  • Smocovitis VB (1992) Unifying biology: the evolutionary synthesis and evolutionary biology. J Hist Biol 25:1–65

    Article  CAS  PubMed  Google Scholar 

  • Suarez E (2001) Satellite-DNA: a case-study for the evolution of experimental techniques. Stud Hist Philos Biol Biomed Sci 32:31–57

    Article  Google Scholar 

  • Suarez E, Barahona A (1996) The experimental roots of the neutral theory of molecular evolution. Hist Philos Life Sci 18:55–81

    Google Scholar 

  • Suarez-Diaz E (2013) Variation, differential reproduction and oscillation: the evolution of nucleic acid hybridization. Hist Philos Life Sci 35:39–44

    PubMed  Google Scholar 

  • Temin HM (1971) The protovirus hypothesis: speculations on the significance of RNA-directed DNA synthesis for normal development and for carcinogenesis. J Natl Cancer Institute 46:3–7

    CAS  Google Scholar 

  • Tenaillon O, Barrick JE, Ribeck N, Deatherage DE, Blanchard JL, Dasgupta A, GC W et al (2016) Tempo and mode of genome evolution in a 50,000-generation experiment. Nature 536:165–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner DD (2017) Paleobiology’s uneasy relationship with the Darwinian tradition: stasis as data. In: Delisle RG (ed) The Darwinian tradition in context: research programs in evolutionary biology. Springer, Cham, pp 333–352

    Chapter  Google Scholar 

  • Van Arsdale A (2017) Human evolution as a theoretical model for an extended evolutionary synthesis. In: Delisle RG (ed) The Darwinian tradition in context: research programs in evolutionary biology. Springer, Cham, pp 333–352

    Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel H (eds) Evolving genes and proteins. Academic, New York, pp 97–166

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Morange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morange, M. (2017). Molecularizing Evolutionary Biology. In: Delisle, R. (eds) The Darwinian Tradition in Context. Springer, Cham. https://doi.org/10.1007/978-3-319-69123-7_12

Download citation

Publish with us

Policies and ethics