Skip to main content

Boundary Value Problems

  • Chapter
  • First Online:
Scientific Computing

Part of the book series: Texts in Computational Science and Engineering ((TCSE,volume 20))

  • 1934 Accesses

Abstract

This chapter is devoted to boundary value problems for ordinary differential equations. It begins with analysis of the existence and uniqueness of solutions to these problems, and the effect of perturbations to the problem. The first numerical approach is the shooting method. This is followed by finite differences and collocation. Finite elements allow for the development of very high order methods for many boundary value problems, but their analysis typically requires sophisticated ideas from real analysis. The chapter ends with the application of deferred correction to both collocation and finite elements.

…years ago many considered BVPs as some sort of a subclass of IVPs, wherein one fiddles with the initial conditions in order to get things right at the other end. It gradually became clear that IVPs are actually a special and in some sense relatively simple subclass of BVPs. The fundamental difference is that for IVPs one has complete information about the solution at one point (the initial point), so one may consider using a marching algorithm which is always local in nature. For BVPs, on the other hand, no complete information is available at any point, so the end points have to be connected by the solution algorithm in a global way. Only after stepping through the entire domain can the solution at any point be determined.

Uri M. Ascher, Robert M. M Mattheij and Robert D. Russell[7, p. xvii].

Science is a differential equation. Religion is a boundary condition.

Alan Turing in epigram to Robin Gandy [104, p. 513]

Additional Material: The details of the computer programs referred in the text are available in the Springer website (http://extras.springer.com/2018/978-3-319-69110-7) for authorized users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions (Dover, New York, 1965)

    Google Scholar 

  2. R.A. Adams (ed.), Sobolev Spaces (Academic, Amsterdam, 1975)

    MATH  Google Scholar 

  3. S. Agmon, Lectures on Elliptic Boundary Value Problems (van Nostrand, Princeton, NJ, 1965)

    MATH  Google Scholar 

  4. U.M. Ascher, R.M.M. Mattheij, R.D. Russell (eds.), Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (Prentice Hall, Englewood, NJ, 1988)

    Google Scholar 

  5. A.K. Aziz (ed.), The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Academic, New York, 1972)

    Google Scholar 

  6. I. Babuška, T. Strouboulis, The Finite Element Method and Its Reliability (Clarendon Press, Oxford, 2001)

    MATH  Google Scholar 

  7. K.J. Bathe, E.L. Wilson, Numerical Methods in Finite Element Analysis (Prentice-Hall, Englewood Cliffs, 1976)

    MATH  Google Scholar 

  8. J. Berbernes, D. Eberly, Mathematical Problems from Combustion Theory. Applied Mathematical Sciences, vol. 83 (Springer, New York, 1989)

    Google Scholar 

  9. G. Birkhoff, G.-C. Rota, Ordinary Differential Equations, 3rd edn. (Wiley, New York, 1978)

    MATH  Google Scholar 

  10. W.E. Boyce, R.C. DiPrima, Elementary Differential Equations and Boundary Value Problems (Wiley, Hoboken, 2012)

    MATH  Google Scholar 

  11. D. Braess, Finite Elements (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  12. J.H. Bramble, S. Hilbert, Bounds for a class of linear functionals with applications to hermite interpolation. Numer. Math. 16, 362–369 (1971)

    Article  MathSciNet  Google Scholar 

  13. S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods (Springer, New York, 2002)

    Book  Google Scholar 

  14. J.R. Cash, M.H. Wright, A deferred correction method for nonlinear two-point boundary value problems: implementation and numerical evaluation. SIAM J. Sci. Stat. Comput. 12(4), 971–989 (1991)

    Article  MathSciNet  Google Scholar 

  15. M.A. Celia, W.G. Gray, Numerical Methods for Differential Equations (Prentice Hall, Englewood Cliffs, NJ, 1992)

    MATH  Google Scholar 

  16. Z. Chen, Finite Element Methods and Their Applications (Springer, Berlin, 1966)

    Google Scholar 

  17. P.G. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1978)

    MATH  Google Scholar 

  18. P.G. Ciarlet, M.H. Schultz, R.S. Varga, Numerical methods of high-order accuracy for nonlinear boundary value problems. Numer. Math. 13, 51–77 (1969)

    Article  MathSciNet  Google Scholar 

  19. C. de Boor, B. Swartz, Collocation at gaussian points. SIAM J. Numer. Anal. 10(4), 582–606 (1973)

    Article  MathSciNet  Google Scholar 

  20. B.A. Finlayson, The Method of Weighted Residuals and Variational Principles (Academic, New York, 1972)

    MATH  Google Scholar 

  21. B. Fornberg, Generation of finite difference formulas on arbitrarily spaced grids. Math. Comput. 51(184), 699–706 (1988)

    Article  MathSciNet  Google Scholar 

  22. H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA, 1950)

    MATH  Google Scholar 

  23. P. Hartman, Ordinary Differential Equations (Wiley, New York, 1964)

    MATH  Google Scholar 

  24. M.T. Heath, Scientific Computing: An Introductory Survey (McGraw-Hill, New York, 2002)

    MATH  Google Scholar 

  25. A. Hodges, Alan Turing: The Enigma (Vintage, London, 1992)

    MATH  Google Scholar 

  26. E. Houstis, A collocation method for systems of nonlinear ordinary differential equations. J. Math. Anal. Appl. 62(1), 24–37 (1978)

    Article  MathSciNet  Google Scholar 

  27. T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1987)

    MATH  Google Scholar 

  28. A. Iserles, A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  29. C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  30. W. Kelley, A. Peterson, The Theory of Differential Equations Classical and Qualitative (Pearson Education, Upper Saddle River, NJ, 2004)

    Google Scholar 

  31. D. Kincaid, W. Cheney, Numerical Analysis (Brooks/Cole, Pacific Grove, CA, 1991)

    MATH  Google Scholar 

  32. H.-O. Kreiss, Difference approximations for boundary and eigenvalue problems for ordinary differential equations. Math. Comput. 21(119), 605–624 (1972)

    Article  MathSciNet  Google Scholar 

  33. E. Kreyszig, Introductory Functional Analysis with Applications (Wiley, New York, 1978)

    MATH  Google Scholar 

  34. J.L. Lions, E. Magenes, Non-homogeneous Boundary Value Problems and Applications (Springer, Berlin, 1972)

    MATH  Google Scholar 

  35. V. Pereyra, Iterated deferred corrections for nonlinear boundary value problems. Numer. Math. 11, 111–125 (1968)

    Article  MathSciNet  Google Scholar 

  36. W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1966)

    MATH  Google Scholar 

  37. R.D. Russell, L.F. Shampine, A collocation method for boundary value problems. Numer. Math. 19(1), 1–28 (1972)

    Article  MathSciNet  Google Scholar 

  38. R.D. Skeel, A theoretical foundation for proving accuracy results for deferred correction. SIAM J. Numer. Anal. 19, 171–196 (1982)

    Article  MathSciNet  Google Scholar 

  39. R.D. Skeel, The order of accuracy for deferred corrections using uncentered formulas. SIAM J. Numer. Anal. 23, 393–402 (1986)

    Article  MathSciNet  Google Scholar 

  40. G. Strang, G.J. Fix, An Analysis of the Finite Element Method (Prentice-Hall, Englewood Cliffs, NJ, 1973)

    MATH  Google Scholar 

  41. B. Szabó, I. Babuška, Finite Element Analysis (Wiley, New York, 1991)

    MATH  Google Scholar 

  42. J.A. Trangenstein, Numerical Solution of Elliptic and Parabolic Partial Differential Equations (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

  43. C. Truesdell, The Elements of Continuum Mechanics (Springer, Berlin, 1966)

    MATH  Google Scholar 

  44. K. Yosida, Functional Analysis (Springer, Berlin, 1974)

    Book  Google Scholar 

  45. O.C. Zienkiewicz, The Finite Element Method in Engineering Science (McGraw-Hill, New York, 1971)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, a part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trangenstein, J.A. (2017). Boundary Value Problems. In: Scientific Computing . Texts in Computational Science and Engineering, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-69110-7_4

Download citation

Publish with us

Policies and ethics