Skip to main content

Abstract

The evolution of plant ecosystems during the Cenophytic was complex and influenced by both abiotic and biotic factors. Among abiotic forces were tectonics, the distribution of continents and seas, climate, and fires; of biotic factors were herbivores, pests, and intra- and interspecific competition. The genus Quercus L. (Quercoideae, Fagaceae ) evolved in this context to become an established member of the plant communities of the Northern Hemisphere , commencing in the Paleogene and spreading to a diverse range of environments in the later Cenozoic . Its palaeontological record, dominated by leaves and pollen , but also including wood, fruits and flowers, is widespread in Eurasia and North America . Consequently, a great number of species have been described, from the 19th century to the present day. Although Quercus is currently an ecologically and economically important component of the forests in many places of the Northern Hemisphere and Southeastern Asia , no comprehensive summary of its fossil record exists. The present work, written by an international team of palaeobotanists, provides the first synthesis of the fossil history of the oaks from their appearance in the early Paleogene to the Quaternary .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ablaev AG, Vassiliev IV (1998) The Miocene Kraskinskaja flora of Primorye. Rossiĭskaia akad nauk. Dal’nevostochnoe otdelenie. Tikhookeanskiĭ okeanologicheskiĭ institut. Vladivostok (in Russian)

    Google Scholar 

  • Akhmetiev MA (1988) Cenozoic floras of the Sikhote-Alin. Geol Inst Acad Sci 1988:1–48 (in Russian)

    Google Scholar 

  • Alcalá B (1997) Prospección palinológica en el Neógeno de Teruel. Teruel 85(1):9–20

    Google Scholar 

  • Alcalá B, Benda L, Ivanovic-Calzaga Y (1996) Erste palynologische Untersuchungen zur Altersstellung des Neogen-Beckens von Xinzo de Limia (Prov. Orense, Spanien). Newsl Stratigr 34(1):31–38

    Google Scholar 

  • Altamira-Areyán A (2002) Las litofacies y sus implicaciones de la cuenca sedimentaria Cutzamala-Tiquicheo, Estado de Guerrero y Michoacán, México. M.Sc. thesis, Universidad Nacional Autónoma de México, México DF

    Google Scholar 

  • Arambourg C, Arènes J, Depape G (1953) Contribution à l’étude des flores fossils quaternaires de l’Afrique du Nord. Arch Mus Natl Hist Nat Paris 2:1–85

    Google Scholar 

  • Ashraf AR, Mosbrugger V, Hebbeker U (1996) Palynologie und Palynostratigraphie in der Niederrheinischen Bucht. Teil 2: Pollen. Palaeontographica Abt B 241:1–98

    Google Scholar 

  • Avakov GS (1979) Miocene flora of Medjuda. Tbilisi (in Russian)

    Google Scholar 

  • Axelrod DI (1939) A Miocene flora from the western border of the Mohave Desert. Carnegie Inst Wash Publ 516:1–144

    Google Scholar 

  • Axelrod DI (1940) The Mint Canyon Flora of southern California: a preliminary statement. Am J Sci 238:577–585

    Article  Google Scholar 

  • Axelrod DI (1944) The Sonoma Flora. In: Chaney RW (ed) Pliocene Floras of California and Oregon. Carnegie Inst Wash Publ 553:167–206

    Google Scholar 

  • Axelrod DI (1950) Studies in late Tertiary paleobotany. Carnegie Inst Wash Publ 590:1–323

    Google Scholar 

  • Axelrod DI (1956) Mio-Pliocene floras from west-central Nevada. Univ Calif Publ Geol Sci 33:1–322

    Google Scholar 

  • Axelrod DI (1973) History of the Mediterranean ecosystem in California. In: di Castri F, Mooney HA (eds) Ecological studies. Analysis and synthesis, vol 7, pp 225–277

    Google Scholar 

  • Axelrod DI (1980) Contributions to the Neogene paleobotany of California. Univ Calif Publ Geol Sci 121:1–212

    Google Scholar 

  • Axelrod DI (1983) Biogeography of oaks in the Arcto-Tertiary province. Ann Missouri Bot Gard 70:629–657

    Article  Google Scholar 

  • Axelrod DI (1985) Miocene floras from the Middlegate Basin, west-central Nevada. Univ Calif Publ Geol Sci 129:1–280

    Google Scholar 

  • Axelrod DI (1991) The Miocene Buffalo Canyon flora, western Nevada. Univ Calif Publ Geol Sci 135:1–180

    Google Scholar 

  • Axelrod DI (1998) The Oligocene Haynes Creek Flora of eastern Idaho. Univ Calif Publ Geol Sci 143:1–99

    Google Scholar 

  • Barclay RS, Johnson KR, Betterton WJ, Dilcher DL (2003) Stratigraphy and megaflora of a K-T boundary section in the eastern Denver Basin, Colorado. Rocky Mt Geol 38:45–71

    Article  Google Scholar 

  • Barrón, E (1996) Estudio tafonómico y análisis paleoecológico de la macro y microflora miocena de la Cuenca de la Cerdaña. Ph.D. thesis, Universidad Complutense de Madrid, Madrid

    Google Scholar 

  • Barrón E (1998) Presencia del género Quercus Linné (Magnoliophyta) en el Vallesiense (Neógeno) de la Cerdaña (Lérida, España). Bol Geol Min 109(2):121–150

    Google Scholar 

  • Barrón E, Lassaletta L, Alcalde Olivares C (2006) Changes in the early Miocene palynoflora and vegetation in the east of the Rubielos de Mora Basin (SE Iberian Ranges, Spain). N Jb Geol Paläontol Abh 242(2/3):171–204

    Article  Google Scholar 

  • Barrón E, Rivas-Carballo MR, Postigo-Mijarra JM, Alcalde-Olivares C, Vieira M, Castro L, Pais J, Valle-Hernández M (2010) The Cenozoic vegetation of the Iberian Peninsula: a synthesis. Rev Palaeobot Palynol 162:382–402

    Article  Google Scholar 

  • Barrón E, Postigo-Mijarra JM, Diéguez C (2014) The late Miocene macroflora of the La Cerdanya Basin (Eastern Pyrenees, Spain): towards a synthesis. Palaeontographica Abt B 291:85–129

    Google Scholar 

  • Barrón E, Postigo-Mijarra JM, Casas-Gallego M (2016) Late Miocene vegetation and climate of the La Cerdanya Basin (eastern Pyrenees, Spain). Rev Palaeobot Palynol 235:99–119

    Article  Google Scholar 

  • Basinger JF (1991) The fossil forests of the Buchanan Lake Formation (early tertiary), Axel Heiberg Island, Canadian High Arctic: preliminary floristics and paleoclimate. Geol Surv Can Bull 403:39–65

    Google Scholar 

  • Baumgartner KA (2014) Neogene climate change in eastern North America: a quantitative reconstruction. Electronic theses and dissertations paper 2348 http://dc.etsu.edu/etd/2348

  • Becker HF (1961) Oligocene plants from the upper Ruby River Basin, southwest Montana. Geol Soc Am Mem 82:1–127

    Article  Google Scholar 

  • Becker HF (1969) Fossil plants of the Tertiary Beaverhead Basins in southwestern Montana. Paleontographica Abt B 127:1–142

    Google Scholar 

  • Becker HF (1973) The York Ranch Flora of the Upper Ruby River Basin, southwestern Montana. Palaeontographica Abt B 143:18–93

    Google Scholar 

  • Bell W (1957) Flora of the Upper Cretaceous Nanaimo group of Vancouver Island, British Columbia. Geol Surv Canada Mem 293:1–84

    Google Scholar 

  • Belz G (1992) Systematisch-palaeooekologische und palaeoklimatologische Analyse von Blattfloren im Mio/Pliozaen der Niederrheinischen Bucht (NW-Deutschland). Dissertation, Univ. Tuebingen, Tuebingen

    Google Scholar 

  • Benammi M, Centeo-García E, Martínez-Hernández E, Morales-Gámez M, Tolson G, Urrutia-Fucugauchi J (2005) Presencia de dinosaurios en la Barranca Los Bonetes en el sur de México (Región de Tiquicheo, Estado de Michoacán) y sus implicaciones cronoestratigráficas. Rev Mex Cien Geol 22:429–435

    Google Scholar 

  • Benda L (1971) Grundzüge einer pollenanalytischen Gliederung des türkischen Jungtertiärs (Känozoikum und Braunkohlen der Türkei. 4). Beih Geol Jahrb 113:3–45

    Google Scholar 

  • Berry EW (1909) A Miocene flora from the Virginia coastal plain. J Geol 17:19–30

    Article  Google Scholar 

  • Berry EW (1916) The physical conditions indicated by the flora of the Calvert formation. US Geol Surv Prof Pap 98:61–73

    Google Scholar 

  • Berry EW (1952) The Pleistocene plant remains of the coastal plain of eastern North America. Palaeobotanist 1:79–98

    Google Scholar 

  • Bessais E, Cravatte J (1988) Les écosystèmes végétaux pliocènes de Catalogne Méridionale. Variations latitudinales dans le domaine Nord-Ouest Méditerranéen. Geobios 21(1):49–63

    Article  Google Scholar 

  • Bessedik M (1984) The early Aquitanian and upper Langhian-lower Serravallian environments in the Northwestern Mediterranean Region. Paléobiol Cont 14(2):153–179

    Google Scholar 

  • Bessedik M (1985) Réconstitution des environnements miocènes des regions nord-ouest mediterranéennes a partir de la Palynologie. Ph.D. thesis, Univ Montpellier II, Montpellier

    Google Scholar 

  • Beyer AF (1954) Some petrified woods from the Specimen Ridge area of Yellowstone National Park. Am Midland Naturalist 51:553–567

    Article  Google Scholar 

  • Biondi E, Koeniguer JC, Privé-Gill C (1985) Bois fossiles et vegetations arborescentes des régions méditerranéenes durant le Tertiare. G Bot Ital 119:167–196

    Article  Google Scholar 

  • Boeshore I, Jump JT (1938) A new fossil oak from Idaho. Am J Bot 25:307–311

    Article  Google Scholar 

  • Böhme M, Bruch A, Selmeier A (2007) The reconstruction of early and middle Miocene climate and vegetation in Southern Germany as determined from the fossil wood flora. Palaeogeogr Palaeoclimatol Palaeoecol 253:91–114

    Article  Google Scholar 

  • Boitzova EP, Panova LA (1966) Fagaceae. In: Paleopalynology, vol 1. Leningrad, Nedra, p 352 (in Russian)

    Google Scholar 

  • Borgardt SJ, Pigg KB (1999) Anatomical and developmental study of petrified Quercus (Fagaceae) fruits from the Middle Miocene, Yakima Canyon, Washington, USA. Am J Bot 86:307–325

    Article  CAS  PubMed  Google Scholar 

  • Borsuk MO (1956) Paleogene flora of Sakhalin. Trab All-Union Prosp Invest Geol Inst 12:1–131 (in Russian)

    Google Scholar 

  • Bouchal J, Zetter R, Grimsson F, Denk T (2014) Evolutionary trends and ecological differentiation in early Cenozoic Fagaceae of western North America. Am J Bot 101:1332–1349

    Article  PubMed  Google Scholar 

  • Bozukov V, Utescher T, Ivanov D (2009) Late Eocene to early Miocene climate and vegetation of Bulgaria. Rev Palaeobot Palynol 153:360–374

    Article  Google Scholar 

  • Bozukov VS, Utescher T, Ivanov D, Tsenov B, Ashraf AR, Mosbrugger V (2011) New results for the fossil macroflora of the Beli Breg Linite Basin. West Bulgaria. Phytol Balcanica 17(1):3–19

    Google Scholar 

  • Brambilla G, Penati F (1987) Le filliti mioceniche del Colle dela Badia di Brescia. Osservazioni sistematiche, cronologiche e ambientali. Ann Mus Civico Sci Nat Brescia 23:79–102

    Google Scholar 

  • Brett D (1960) Fossil oak wood from the British Eocene. Palaeontology 3(1):86–92

    Google Scholar 

  • Brown RW (1962) Paleocene Flora of the Rocky Mountains and Great Plains. US Geol Surv Prof Pap 375:1–119

    Google Scholar 

  • Bruch AA, Utescher T, Mosbrugger V, NECLIME members (2011) Precipitation patterns in the Miocene of Central Europe and the development of continentality. Palaeogeogr Palaeoclimatol Palaeoecol 304:202–211

    Article  Google Scholar 

  • Budantsev LY (1997) Late Eocene flora of the Western Kamchatka. Nauka, St. Petersburg (in Russian)

    Google Scholar 

  • Budantsev LY, Golovneva LB (2009) Fossil Flora of Arctic, II. Palaeogene Flora of Spitsbergen. Russian Academy of Sciences, St. Petersburg

    Google Scholar 

  • Buechler WK, Dunn MT, Rember WC (2007) Late Miocene Pickett Creek Flora of Owyhee County, Idaho. Contrib Mus Paleontol Univ Michigan 31:305–362

    Google Scholar 

  • Burnham RJ, Graham A (1999) The history of Neotropical vegetation: new developments and status. Ann Missouri Bot Gard 86:546–589

    Article  Google Scholar 

  • Bůžek C, Kvaček Z, Holý F (1985) Late Pliocene palaeoenvironment and correlation of the Vildstejn floristic complex within Central Europe. Rozpr Cesk Akad Ved Rada Mat Prírod Ved 95(7):1–72

    Google Scholar 

  • Call V, Tidwell WD (1988) Fossil wood from the Miocene of Wall Canyon Creek, northwestern Nevada. Am J Bot 75(2):104–105

    Google Scholar 

  • Camus A (1936–1954) Les chênes. Monographie du genre Quercus et Lithocarpus. Encyclopedie économique de sylviculture, Paul Lechevalier éditeur, Paris

    Google Scholar 

  • Casas-Gallego M (2017) Estudio palinológico del Oligoceno-Mioceno Inferior de la cuenca de As Pontes (Galicia, España). Ph.D. thesis, Universidad Autónoma de Madrid, Madrid

    Google Scholar 

  • Cavagnetto C, Anadón P (1996) Preliminary palynological data on floristic and climatic changes during the Middle Eocene-Early Oligocene of eastern Ebro Basin, northeast Spain. Rev Palaeobot Palynol 92:281–305

    Article  Google Scholar 

  • Cavender-Bares J, Gonzalez-Rodriguez A, Eaton DAR, Hipp AAL, Beulke A, Manos PS (2015) Phylogeny and biogeography of the American live oaks (Quercus subsection Virentes): a genomic and population genetics approach. Mol Ecol 24:3668–3687

    Article  PubMed  Google Scholar 

  • Chaney RW (1944) The Troutdale Flora. In: Chaney RW (ed) Pliocene Floras of California and Oregon. Carnegie Inst Wash Publ 553:323–352

    Google Scholar 

  • Chaney RW (1959) Miocene Floras of the Columbia Plateau. Part 1. Composition and interpretation. Carnegie Inst Wash Publ 617:1–134

    Google Scholar 

  • Chaney RW, Axelrod DI (1959) Miocene Floras of the Columbia Plateau. Part 2. Systematic considerations. Carnegie Inst Wash Publ 617:135–237

    Google Scholar 

  • Chaney RW, Elias MK (1936) Late Tertiary floras from the High Plains. Carnegie Inst Wash Publ 476:1–46

    Google Scholar 

  • Chateauneuf JJ (1972) Étude palynologique de l’Aquitanien. Bull Bur Rech Géol Min 2(14):59–65

    Google Scholar 

  • Chateauneuf JJ, Nury D (1995) La flore de l’Oligocène de Provence méridionale: implications stratigraphiques, environmentales et climatiques. Geol Fr 2:43–45

    Google Scholar 

  • Collinson ME (1984) Fossil plants of the London Clay. Field guide to fossils, 1. The Palaeontological Association, London

    Google Scholar 

  • Collinson ME, Manchester SR, Wilde V (2012) Fossil fruits and seeds of the middle Eocene Messel biota, Germany. Abh Senckenb Ges Naturforsch 570:1–251

    Google Scholar 

  • Condit C (1944) The Remington Hill Flora. In: Chaney RW (ed) Pliocene Floras of California and Oregon. Carnegie Inst Wash Publ, vol 553, pp 21–56

    Google Scholar 

  • Conwentz H (1886) Die flora des Bernsteins, Zweiter Band; Die Angiospermen des Bernsteins. Engelmann, Danzig

    Google Scholar 

  • Crabtree DR (1987) Angiosperms of the northern Rocky Mountains: Albian to Campanian (Cretaceous) megafossil floras. Rev Palaeobot Palynol 74:707–747

    Google Scholar 

  • Crepet WL (1989) History and implications of the early North American fossil record of Fagaceae In: Crane PR, Blackmore S (eds) Evolution, systematics and fossil history of the Hamamelidae. Vol. 2 “Higher” Hamamelidae. Oxford University Press, Oxford

    Google Scholar 

  • Daghlian CP, Crepet WL (1983) Oak catkins, leaves and fruits from the Oligocene Catahoula Formation and their evolutionary significance. Am J Bot 70:639–649

    Article  Google Scholar 

  • de Candolle A (1862) Étude sur l’espèce à l’occasion d’une révision de la famille des cupulifères. Ann Sci Nat Bot 4ème Ser. 18:59–110

    Google Scholar 

  • de Carvalho A (1958) Identificação de un possível fóssil de sobreiro (Quercus suber) proveniente de solos do Mioceno lacustre do Alentejo. Bol Soc Broteriana 32:75–79

    Google Scholar 

  • De Nascimento L, Willis KJ, Fernández-Palacios JM, Criado C, Whittaker RJ (2009) The long-term ecology of the lost forests of La Laguna, Tenerife (Canary Islands). J Biogeogr 36(3):499–514

    Article  Google Scholar 

  • de Saporta G (1865) Études sur la végétation du sud-est de la France à l’époque tertiaire. Deuxième partie. Flore d’Armissan et de Peryac, dans le Bassin de Narbonne (Aude). Ann Sci Nat Bot 5ème Ser 4:5–264

    Google Scholar 

  • de Saporta G(1867) Études sur la végétation du Sud-Est de la France à l’époque tertiaire. Ann Sci Nat Bot 5ème Ser 8:5–136

    Google Scholar 

  • de Saporta G (1888) Origine paléontologique des arbres cultivés o utilisés par l’homme. Académie de Médecine, Paris

    Google Scholar 

  • de Saporta G, Marion A-F (1876) Recherches sur les végétaux fossiles de Meximieux. Arch Mus Hist Nat Lyon 1:131–335

    Google Scholar 

  • Denk T, Grimm GW (2009) Significance of pollen characteristics for infrageneric classification and phylogeny in Quercus (Fagaceae). Int J Plant Sci 170:926–940

    Article  Google Scholar 

  • Denk T, Grimm GW (2010) The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon 59:351–366

    Google Scholar 

  • Denk T, Grimsson F, Zetter R (2010) Episodic migration of oaks to Iceland: evidence for a North Atlantic ‘land bridge’ in the latest Miocene. Am J Bot 97:276–287

    Article  PubMed  Google Scholar 

  • Denk T, Grímsson F, Zetter R (2012) Fagaceae from the early Oligocene of Central Europe: persisting new world and emerging old world biogeographic links. Rev Palaeobot Palynol 169:7–20

    Article  Google Scholar 

  • Denk T, Velitzelos D, Güner TH, Bouchal JM, Grímsson F, Grimm G (2017) Taxonomy and palaeoecology of two widespread western Eurasian Neogene sclerophyllous oak species: Quercus drymeja Unger and Q. mediterranea Unger. Rev Palaeobot Palynol 241:98–128

    Google Scholar 

  • Depape G (1912) Note sur quelques chènes miocènes et pliocènes. Rev Gén Bot 24:355–372

    Google Scholar 

  • DeVore ML, Pigg KB (2010) Floristic composition and comparison of Middle Eocene to Late Eocene and Oligocene floras in North America. Bull Geosci 85:111–134

    Article  CAS  Google Scholar 

  • DeVore ML, Pigg KB, Dilcher DL, Freile D (2014) Catahoulea grahamii gen. et sp. nov.: fagaceous involucres from the Oligocene Catahoula Formation, central Texas and the middle Eocene Claiborne Formation of Kentucky and Tennessee, USA. In: Stevens WD, Montiel OM, Raven P (eds) Paleobotany and biogeography A Festschrift for Alan Graham in his 80th year. Missouri Botanical Garden Press, St. Louis (Chapter 3)

    Google Scholar 

  • Diéguez C, Nieves-Aldrei JL, Barrón E (1996) Fossil galls (zoocecids) from the Upper Miocene of La Cerdaña (Lérida, Spain). Rev Palaeobot Palynol 94:329–343

    Article  Google Scholar 

  • Dillhoff RM, Leopold EB, Manchester SR (2005) The McAbee flora of British Columbia and its relation to the early-middle Eocene Okanagan Highlands flora of the Pacific Northwest. Can J Earth Sci 42:151–166

    Article  Google Scholar 

  • Doláková N (2004) Discussion of some thermophile palynomorphs from the Miocene sediments in the Carpathian Foredeep (Czech Republic) and Modrý Kamen basin (Slovakia). Acta Palaeobot 44(1):79–85

    Google Scholar 

  • Dorf E (1930) Pliocene Floras of California. Carnegie Inst Wash Publ 412:1–108

    Google Scholar 

  • Dorf E (1942) Upper Cretaceous Floras of the Rocky Mountain region: Flora of the Lance Formation at its type locality, Niobrara County, Wyoming. Carnegie Inst Wash Publ 508:83–168

    Google Scholar 

  • Du FK, Hou M, Wang W, Mao K, Hampe A (2016) Phylogeography of Quercus aquifolioides provides novel insights into the Neogene history of a major global hotspot of plant diversity in south-west China. J Biogeogr 44:294–307

    Article  Google Scholar 

  • Dupéron-Laudoueneix M, Dupéron J (1995) Inventory of Mesozoic and Cenozoic woods from Equatorial and North Equatorial Africa. Rev Palaeobot Palynol 84:439–480

    Article  Google Scholar 

  • Dyjor S, Kvaček Z, Łańcucka-Środoniowa M, Pyszyński W, Sadowska A, Zastawniak E (1992) The younger tertiary deposits in the Gozdnica region (SW Poland) in the light of recent palaeobotanical research. Polish Bot Stud 3:3–129

    Google Scholar 

  • Eberle JJ, Greenwood DR (2012) Life at the top of the greenhouse Eocene world—a review of the Eocene flora and vertebrate fauna from Canada’s High Arctic. Geol Soc Am Bull 124:3–23

    Article  Google Scholar 

  • Ellis B, Daley DC, Hickey LJ, Johnson KR, Mitchell JD, Wilf P, Wing SL (2009) Manual of leaf architecture. Cornell University Press, Ithaca

    Google Scholar 

  • El-Saadawi W, Kamal-El-Din MM, Attia Y, El-Faramawi MW (2011) The wood flora of the Cairo Petrified Forest, with five Paleogene new legume records for Egypt. Rev Palaeobot Palynol 167:184–195

    Article  Google Scholar 

  • Erwin DM, Schick KN (2007) New Miocene oak galls (Cynipini) and their bearing on the history of cynipid wasps in western North America. J Paleontol 81:568–580

    Article  Google Scholar 

  • Farlow JO, Sunderman JA, Havens JJ, Swinehart AL, Holman JA, Richards RL, Miller NG, Martin RA, Hunt RM Jr, Storrs GW, Curry BB, Fluegeman RH, Dawson MR, Flint MET (2001) The Pipe Creek Sinkhole biota, a diverse Late Tertiary continental fossil assemblage from Grant County, Indiana. Am Midland Natur 145:367–378

    Article  Google Scholar 

  • Felix J (1896) Untersuchungen über fossile Hölzer. Verh Z Deutsch Geol Ges 48:249–260

    Google Scholar 

  • Fields PF (1996) The Succor Creek Flora of the Middle Miocene Sucker Creek Formation, southwestern Idaho and eastern Oregon: systematics and paleoecology. Ph.D. thesis, Michigan State University, Michigan

    Google Scholar 

  • Flora of North America editorial committee (1997) Magnoliophyta: Magnoliidae and Hamamelidae, vol 3. Oxford, New York

    Google Scholar 

  • Follieri M (1979) Ricerche paleobotaniche sulla serie di Torre in Pietra (Roma). Quaternaria 21:73–86

    Google Scholar 

  • Fontaine WM (1889) The Potomac or younger Mesozoic flora. US Geol Surv Monogr 15:1–377

    Google Scholar 

  • Frankenhäuser H, Wilde V (1995) Stachelspitzige Blätter aus dem Mitteleozän von Eckfeld (Eifel). Abh Staatl Mus Mineral Geol Dresden 4:97–115

    Google Scholar 

  • Frederiksen NO (1981) Middle Eocene to early Oligocene plant communities of the Gulf Coast US. In: Gray J, Boucot WBN (eds) Communities of the Past. Hutchinson Ross, Stroudsbury

    Google Scholar 

  • Frederiksen NO (1988) Sporomorph biostratigraphy, floral changes and paleoclimatology. Eocene and earliest Oligocene of the eastern Gulf Coast. US Geol Surv Prof Pap 1448:1–68

    Google Scholar 

  • Frederiksen NO, Edwards LE, Ager TA, Sheehan TP (2002) Palynology of Eocene strata in the Sagavanirktok and Canning Formations on the North slope of Alaska. Palynology 26:59–93

    Article  Google Scholar 

  • Friis EM, Crepet WL (1987) Time of appearance of floral features. In: Friis EM, Chaloner R, Crepet WL (eds) The origins of angiosperms and their biological consequences. Cambridge University Press, Cambridge

    Google Scholar 

  • Friis EM, Crane PR, Pedersen KR (2011) Early flowers and angiosperm evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gabel ML, Backlund DC, Haffner J (1998) The Miocene macroflora of the northern Ogallala Group, northern Nebraska and southern South Dakota. J Paleontol 72:388–397

    Article  Google Scholar 

  • Gandolfo MA (1996) The presence of Fagaceae (oak family) in sediments of the Klondike Mountain Formation (Middle Eocene) Republic, Washington. Wash Geol 24:20–21

    Google Scholar 

  • Gardère P, Pais J (2007) Palynologic data from Aquitaine (SW France) Middle Miocene Sables Fauves Formation. Climatic evolution. Ciênc Terra (UNL) 15:151–161

    Google Scholar 

  • Gastaldo RA, Riegel W, Püttmann W, Linnemann UG, Zetter R (1998) A multidisciplinary approach to reconstruct the Late Oligocene vegetation in Central Europe. Rev Palaeobot Palynol 101:71–94

    Article  Google Scholar 

  • Golovneva LB (2000) Early Palaeogene floras of Spitsbergen and North Atlantic floristic exchange. Acta Univ Carol Geol 44:39–50

    Google Scholar 

  • Göppert HR (1855) Die Tertiäre Flora von Schossnitz in Schlesien. Heyn’sche Buchhandlung E, Remer, Görlitz

    Google Scholar 

  • Gottwald H (1966) Eozäne Holzer aus Bruankohle von Helmstedt. Palaeontographica B 119:76–93

    Google Scholar 

  • Govaerts R, Frodin DG (1998) World checklist and bibliography of Fagales (Betulaceae, Corylaceae, Fagaceae and Ticodendraceae). Royal Botanic Gardens, Kew

    Google Scholar 

  • Grabowska I (1996) Flora sporowo-pyłkowa. In: Malinowska L, Piwocki M (eds) Budowa Geologiczna Polski. Vol. 3. Atlas skamieniałości przewodnich i charakterystycznych. 3a. Kenozoik. Trzeciorzęd. 1. Paleogen. Polska Agencja Ekologiczna, Warszawa

    Google Scholar 

  • Graham A (1965) The Sucker Creek and Trout Creek Miocene floras of southeastern Oregon. Kent State Univ Bull 53:1–147

    Google Scholar 

  • Graham A (1999a) Late Cretaceous and Cenozoic history of North American vegetation. Oxford University Press, Oxford

    Google Scholar 

  • Graham A (1999b) The Tertiary history of the northern temperate element in the northern Latin American biota. Am J Bot 86:32–38

    Article  CAS  PubMed  Google Scholar 

  • Grangeon P (1953) La flore pontienne de Gourgouras (Ardèche). Bull Soc Géol Fr 6ème Ser 3:303–320

    Google Scholar 

  • Grangeon P (1958) Contribution à l’étude de la paléontologie végétale du Massif du Coiron (Sud-Est du Massif Central Français). Ph.D. thesis, Univ. Clermont, Clermont-Ferrand

    Google Scholar 

  • Greenwood DR, Pigg KB, Basinger JF, DeVore ML (2016) A review of paleobotanical studies of the Early Eocene Okanagan (Okanogan) Highlands floras of British Columbia, Canada, and Washington, USA. Can J Earth Sci 53:548–564

    Article  Google Scholar 

  • Gregory M, Poole I, Wheeler EA (2009) Fossil dicot wood names an annotated list with full bibliography. IAWA J, Suppl 6:1–220

    Google Scholar 

  • Grein M, Oehm C, Konrad W, Utescher T, Kunzmann L, Roth-Nebelsick A (2013) Atmospheric CO2 from the late Oligocene to early Miocene based on photosynthesis data and fossil leaf characteristics. Palaeogeogr Palaeoclimat Palaeoecol 374:41–51

    Article  Google Scholar 

  • Grímsson F, Zetter R, Grimm GW, Pedersen GK, Pedersen AK, Denk T (2015) Fagaceae pollen from the early Cenozoic of West Greenland: revisiting Engler’s and Chaney’s arctotertiary hypothesis. Plant Syst Evol 301:809–832

    Article  PubMed  Google Scholar 

  • Grímsson F, Grimm GW, Zetter R, Denk T (2016) Cretaceous and Paleogene Fagaceae from North America and Greenland: evidence for a Late Cretacous split between Fagus and the remaining Fagaceae. Acta Palaeobot 56:247–305

    Google Scholar 

  • Güner TH, Bouchal JM, Köse N, Göktaş F, Mayda S, Denk T (2017) Landscape heterogeneity in the Yatağan Basin (southwestern Turkey) during the middle Miocene inferred from plant macro fossils. Paleontographica B (in press)

    Google Scholar 

  • Günther T, Gregor HJ (1997) Computeranalyse neogener Frucht- und Samenfloren europas. Band 5: Artennachweise und stratigraphische Problematik. Doc Nat 50(5)1–150

    Google Scholar 

  • Guo SX, Zhang GF (2002) Oligocene Sanhe flora in Longjing county of Jilin, Northeast China. Acta Palaeontol Sin 41(2):193–210

    Google Scholar 

  • Hably L, Kvaček Z (1997) Early Pliocene plant megafossils from the volcanic area in West Hungary. In: Hably L (ed) Early Pliocene volcanic environment, flora and fauna from Transdanubia, West Hungary. Hungarian Research Fund (OTKA), Budapest, pp 5–151

    Google Scholar 

  • Hably L, Kvaček Z (1998) Pliocene mesophytic forests surrounding crater lakes in western Hungary. Rev Palaeobot Palynol 101:257–269

    Article  Google Scholar 

  • Hall RE, Poppe LJ, Ferrebee WM (1980) A stratigraphic test well, Martha’s Vineyard, Massachusetts. Description of Pleistocene to Upper Cretaceous sediments recovered from 262 meters of test coring. US Geol Surv Bull 1488:1–19

    Google Scholar 

  • Hantke R (1965) Die fossilen Eichen und Ahorne aus den Molasse der Schweiz und von Oehningen (Süd-Baden). Eine Revision der von Oswald Heer diesem Gattungen zugeordneten Reste. Neuj natur Gesel Zürich 167:1–140

    Google Scholar 

  • He JS, Chen WL, Wang XL (1994) Morphological and anatomical features of Quercus section suber and its adaptation to the ecological environment. Acta Phytoecol Sin 18:219–227

    CAS  Google Scholar 

  • Heer O (1853) Übersicht der Tertiärflore der Schweiz. Mitt naturf Ges Zürich 7:88–153

    Google Scholar 

  • Heer O (1856) Flora tertiaria Helvetiae. Die Tertiäre Flora der Schweiz. Vol 2. Die apetalen Dicotyledonen. Wurster and Company, Winterthur

    Google Scholar 

  • Heer O (1859) Flora tertiaria Helvetiae. Die Tertiäre Flora der Schweiz. Vol 3. Die gamopetalen und polypetalen Dicotyledonen. Anhang. Allgemeiner Theil. Wurster and Company, Winterthur

    Google Scholar 

  • Herendeen PS, Crane PR, Drinnan AN (1995) Fagaceous flowers, fruits, and cupules from the Campanian (Late Cretaceous) of central Georgia, USA. Int J Plant Sci 156:93–116

    Article  Google Scholar 

  • Hermann M (2007) Eine palynologische Analyse der Bohrung Enspel—Rekonstruktion der Klima- und Vegetationsgeschichte im Oberoligozän. Ph.D. thesis, University of Tübingen, Germany

    Google Scholar 

  • Hickey LJ (1977) Stratigraphy and paleobotany of the Golden Valley Formation (early tertiary) of western North Dakota. Geol Soc Am Mem 150:1–181

    Google Scholar 

  • Hofmann CC, Mohamed O, Egger H (2011) A new terrestrial palynoflora from the Palaeocene/Eocene boundary in the northwestern Tethyan realm (St. Pankraz, Austria). Rev Palaeobot Palynol 166:295–310

    Article  Google Scholar 

  • Holden AR, Erwin DM, Schick KN, Gross J (2015) Late Pleistocene galls from the La Brea Tar Pits and their implications for cynipine wasp and native plant distribution in southern California. Quaternary Res 84:358–367

    Article  Google Scholar 

  • Hollick AW (1904) Systematic Paleontology; Plantae Angiospermae. In: Maryland Geologic Survey Miocene. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Hori J (1976) On the study of the Kobe flora from the Kobe Group (Late Miocene age), Rokko highland. Nihon Chibaku-kaikan, Kyoto (in Japanese)

    Google Scholar 

  • Hori J (1987) Plant fossils from the Miocene Kobe flora. Hyogo Biology Society, Fukusaki (in Japanese)

    Google Scholar 

  • Hu HH, Chaney RW (1940) A Miocene flora from Shantung province, China. Carnegie Inst Wash Publ 507(1–82):1–147

    Google Scholar 

  • Hu Q, Xing Y, Hu JJ, Huang Y, Ma H, Zhou Z-K (2014) Evolution of stomata and trichome density of the Quercus delavayi complex since the late Miocene. Chin Sci Bull 59(3):310–319

    Article  CAS  Google Scholar 

  • Huang CC, Chang YT, Bartholomew B (1999) Fagaceae. In: Wu CY, Raven PH (eds) Flora of China. Science Press, Beijing

    Google Scholar 

  • Hubert FGW, Jousslin E, Berry B, Franc A, Kremer A (2014) Multiple nuclear genes stabilize the phylogenetic backbone of the genus Quercus. Syst Biodiver 12:405–423

    Article  Google Scholar 

  • Huff PM, Wilf P, Azumah EJ (2003) Digital future for paleoclimate estimation from fossil leaves? Preliminary results. Palaios 18:266–274

    Article  Google Scholar 

  • Huhn B, Utescher T, Ashraf AR, Mosbrugger V (1997) The peat-forming vegetation in the Middle Miocene of the Lower rhine Embayment, an analysis based on palynological data. Med Nederlands Inst Toegepaste Geow 58:211–218

    Google Scholar 

  • Hummel A (1983) The Pliocene leaf flora from Ruszów near Zary in Lower Silesia, SW Poland. Pr Muz Ziemi 36:9–104

    Google Scholar 

  • Huzioka K, Takahashi E (1970) The Eocene flora of the Ube coal-field, southwest Honshu, Japan. J Min Coll Akita Univ A 4:1–88

    Google Scholar 

  • Iamandei E, Iamandei S, Diaconu F (2011) Fossil woods in the collections of Drobeta-Tr Severin Museum. Acta Paleontol Romaniae 5(7):199–218

    Google Scholar 

  • Iamandei S, Iamandei E, Bozukov V, Tsenov B (2012) Oligocene fossil woods from Rhodopes. Bulgaria. Acta Paleontol Romaniae 9(2):15–25

    Google Scholar 

  • Iglesias-González R (2015) Evolución de la vegetación en el sector biogeográfico Castellano Cantábrico en el Cuaternario final, a través del registro tobáceo. Ph.D. thesis, Universidad Politécnica de Madrid, Madrid

    Google Scholar 

  • Iljinskaja IA (1982) Quercus L. In: Takhtajan AL (ed) Iskopaemye tsvetkovye rasteniya SSSR, vol 2. Fossil Flowering Plants of the USSR. Ulmaceae–Betulaceae, Nauka, Leningrad, pp 89–114(in Russian)

    Google Scholar 

  • Iljinskaja IA (1991) Relations of the Early Oligocene flora of Kiin-Kerish Mountain with the modern flora. In: Zhilin SG (ed), Development of the flora in Kazakhstan and Russian Plain from the Eocene to the Miocene. Lectures in memory of A.N. Kryshtofovich. Ser. vol 2, pp 22–28 (in Russian)

    Google Scholar 

  • InsideWood (2004 onwards) InsideWood: a web resource for hardwood anatomy. http://insidewood/lib.ncsu.edu

  • Ivanov D, Ashraf AR, Mosbrugger V (2007) Late Oligocene and Miocene climate and vegetation in the Eastern Paratethys area (northeast Bulgaria), based on pollen data. Palaeogeogr Palaeoclimatol Palaeoecol 255:342–360

    Article  Google Scholar 

  • Jahren AH (2007) The Arctic forest of the middle Eocene. Ann Rev Earth Planetary Sci 35:509–540

    Article  CAS  Google Scholar 

  • Jensen R, Hokanson S, Isebrands J, Hancock J (1993) Morphometric variation in oaks of the Apostle Islands in Wisconsin: evidence of hybridization between Quercus rubra and Q. ellipsoidalis (Fagaceae). Am J Bot 80:1358–1366

    Article  Google Scholar 

  • Jiménez-Moreno G (2006) Progressive substitution of a subtropical forest for a temperate one during the middle Miocene climate cooling in Central Europe according to palynological data from cores Tengelic-2 and Hidas-53 (Pannonian Basin, Hungary). Rev Palaeobot Palynol 142:1–14

    Article  Google Scholar 

  • Jiménez-Moreno G, Suc JP (2007) Middle Miocene latitudinal climatic gradient in Western Europe: Evidence from pollen records. Palaeogeogr Palaeoclimatol Palaeoecol 253:208–225

    Article  Google Scholar 

  • Jiménez-Moreno G, Rodríguez-Tovar FJ, Pardo-Igúzquiza E, Fauquette S, Suc JP, Müller P (2005) High-resolution palynological analysis in late early-middle Miocene core from the Pannonian Basin, Hungary: climatic changes, astronomical forcing and eustatic fluctuations in the Central Paratethys. Palaeogeogr Palaeoclimatol Palaeoecol 216:73–97

    Article  Google Scholar 

  • Jiménez-Moreno G, Burjachs F, Expósito I, Oms O, Carrancho A, Villalaín JJ, Agustí J, Campeny G, Gómez de Soler B, Van der Made J (2013) Late Pliocene vegetation and orbital-scale climate changes from the western Mediterranean area. Global Planet Change 108:15–28

    Article  Google Scholar 

  • Jones JH (1986) Evolution of the Fagaceae. The implications of foliar features. Ann Missouri Bot Gard 73:228–275

    Article  Google Scholar 

  • Jones JH, Dilcher DL (1988) A study of the “Dryophyllum” leaf forms from the Paleogene of southeastern North America. Palaeontographica Abt B 208:53–80

    Google Scholar 

  • Jones JH, Manchester SR, Dilcher DL (1988) Dryophyllum Debey ex Saporta, Juglandaceous not Fagaceaous. Rev Palaeobot Palynol 56:205–211

    Article  Google Scholar 

  • Jonsson CHW, Hebda RJ (2015) Macroflora, paleogeography, and paleoecology of the Upper Cretaceous (Turonian?–Santonian) Saanich Member of the Comox Formation, Saanich Peninsula, British Columbia, Canada. Canadian J Earth Sci 52:519–536

    Article  Google Scholar 

  • Klimova RS (1976) Fagaceae from Miocene flora of western Primorye. Palaeontol Z 1976(1):104–109 (in Russian)

    Google Scholar 

  • Kmenta M, Zetter R (2013) Combined LM and SEM study of the upper Oligocene/lower Miocene palynoflora from Altmittweida (Saxony): Providing new insights into Cenozoic vegetation evolution of Central Europe. Rev Palaeobot Palynol 195:1–18

    Article  Google Scholar 

  • Knobloch E (1969) Tertiäre Floren von Mähren. Moravské Museum, Brno

    Google Scholar 

  • Knobloch E (1988) Neue Ergebnisse zur Flora aus der Oberen Sūbwassermolasse von Aubenham bei Ampfing (Krs. Muhldorf am Inn). Doc Nat 42:1–27

    Google Scholar 

  • Knobloch E (1998) Der pliozäne Laubwald von Willershausen am Harz. Doc Nat 120:1–306

    Google Scholar 

  • Knobloch E, Konzalová M (1998) Comparison of the Eocene plant assemblages of Bohemia (Czech Republic) and Saxony (Germany). Rev Palaeobot Palynol 101:29–41

    Article  Google Scholar 

  • Knobloch E, Kvaček Z (1976) Miozäne Blätterfloren vom Westrand der Böhmischen Masse. Rozpr Ústred ústav Geol Praha 42:1–129

    Google Scholar 

  • Knobloch E, Kvaček Z (1981) Miozäne Pflanzenreste aus der Umgebung von Tamsweg (Niedere Tauern). Acta Univ Carol Geol 2:95–120

    Google Scholar 

  • Knobloch E, Velitzelos E (1986) Die obermiozäne Flora von Likudi bei Elassona/Thessalien, Griechenland. Doc Nat 29:5–20

    Google Scholar 

  • Knowlton FH (1899) Fossil flora of the Yellowstone National Park. US Geol Surv Monogr Ser 32(2):651–791

    Google Scholar 

  • Kodrul T (1999) Paleogene phytostratigraphy of the South Sakhalin. Geol Inst RAS Transactions 1999(519):1–146 (in Russian)

    Google Scholar 

  • Kohlman-Adamska A (1993) Pollen analysis of the Neogene deposits from the Wyrzysk Region, North-Western Poland. Acta Palaeobot 31(3):91–297

    Google Scholar 

  • Kolakovskii AA (1964) The Pliocene flora of Kodor. Sukhumskiy Bot Sad Monogri 1:1–200 (in Russian)

    Google Scholar 

  • Kondinskaya L, Yudina E (1989) Palynocomplexes of Paleogene and Neogene of Ob-Irtysh interfluve of the West Siberian Plain and their stratigraphic significance. In: Cenozoic of Siberia and North-east of USSR, Nauka. Sib. Otd., Novosibirsk, 192 pp, pp 5–59 (in Russian)

    Google Scholar 

  • Kosmowska-Ceranowicz B (1987) Charakterystuka mineralogiczno-petrograficzna bursztynonosnych osadów Eocenu w okolicach Chlapowo oraz osadów Paleogenu Polnocnej Polski. Biul Inst Geol 356:29–50

    CAS  Google Scholar 

  • Kovar-Eder J, Hably L (2006) The flora of Mataschen—a unique plant assemblage from the Late Miocene of eastern Styria (Austria). Acta Palaeobot 46(2):157–233

    Google Scholar 

  • Kovar-Eder J, Kvaček Z (2007) The integrated plant record (IPR) to reconstruct Neogene vegetation: the IPR-vegetation analysis. Acta Palaeobot 47(2):391–418

    Google Scholar 

  • Kovar-Eder J, Meller B, Zetter R (1998) Comparative investigations on the basal fossiliferous layer at the opencast mine Oberdorf (Köflach-Voitsberg lignite deposit, Styria, Austria; Early Miocene). Rev Palaeobot Palynol 101:125–145

    Article  Google Scholar 

  • Kovar-Eder J, Kvaček Z, Meller B (2001) Comparing Early to Middle Miocene floras and probable vegetation types of Oberdorf N Voitsberg (Austria), Bohemia (Czech Republic), and Wackersdorf (Germany). Rev Palaeobot Palynol 114:83–125

    Article  CAS  PubMed  Google Scholar 

  • Kovar-Eder J, Kvaček Z, Ströbitzer-Hermann M (2004) The Miocene flora of Parschlug (Styria, Austria)—Revision and synthesis. Ann Naturhist Mus Wien 105A:45–159

    Google Scholar 

  • Kovar-Eder J, Jechorek H, Kvaček Z, Parasiv V (2008) The integrated plant record: an essential tool for reconstructing Neogene zonal vegetation in Europe. Palaios 23:97–111

    Article  Google Scholar 

  • Kräusel R (1939) Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens, IV. Die fossilen Floren Ägyptens 3. Die fossilen Pflanzen Ägyptens, E-1. Abh Bayer Akad Wiss München NF 47:1–140

    Google Scholar 

  • Krutzsch W, Blumenstengel H, Kiesel Y, Rūffle L (1992) Paläobotanische Klimagliederung des Altertiärs (Mitteleozän bis Oberoligozän) in Mitteldeutschland und das Problem der Verknupfung mariner und kontinentaler Geliederungen (klassische Biostratigraphien–paläobotanisch–ökologische Klimastratigraphie–Evolutions–Stratigraphie der Vertebraten). N Jb Geol Paläontol Abh 186:137–253

    Google Scholar 

  • Kvaček Z (1998) Bílina: a window on Early Miocene marshland environments. Rev Palaeobot Palynol 101:111–123

    Article  Google Scholar 

  • Kvaček Z (2010) Forest flora and vegetation of the European early Palaeogene—a review. Bull Geosci 85:3–16

    Google Scholar 

  • Kvaček Z, Hurník S (2000) Revision of early Miocene plants preserved in baked rocks in the North bohemian Tertiary. Acta Mus Natl Pragae Ser B Hist Nat 56(1–2):1–48

    Google Scholar 

  • Kvaček Z, Walther H (1989) Paleobotanical studies in Fagaceae of the European tertiary. Plant Syst Evol 162:213–229

    Article  Google Scholar 

  • Kvaček Z, Mihajlovic D, Mihajlovic D, Vrabac S (1993) Early Miocene flora of Miljevina (Eastern Bosnia). Acta Palaeobot 33(1):53–89

    Google Scholar 

  • Kvaček Z, Velitzelos D, Velitzelos E (2002) Late Miocene flora of Vegora Macedonia N. Univ Athens, Athens, Greece

    Google Scholar 

  • Kvaček Z, Teodoridis V, Gregor HJ (2008) The Pliocene leaf flora of Auenheim, Northern Alsace (France). Doc Nat 155(10):1–108

    Google Scholar 

  • Kvaček Z, Teodoridis V, Roiron P (2011) A forgotten Miocene mastixioid flora of Arjuzanx (Landes, SW France). Palaeontographica Abt B 285:3–111

    Article  Google Scholar 

  • LaMotte RS (1952) Catalog of the Cenozoic Plants of North America through 1950. Geol Soc Am Mem 51:1–381

    Article  Google Scholar 

  • Larsson LM, Vajda V, Dybkjær K (2010) Vegetation and climate in the latest Oligocene–earliest Miocene in Jylland, Denmark. Rev Palaeobot Palynol 159:166–176

    Article  Google Scholar 

  • Lathram EH, Pomeroy JS, Berg H, Loney RA (1965) Reconnaissance Geology of Admiralty Island, Alaska. US Geol Surv Bull 1181-R:R1–R48

    Google Scholar 

  • Laurent L (1912) Flore fossile des schistes de Menat (Puy-de-Dôme). Ann Mus Hist Nat Marseille 14:1–246

    Google Scholar 

  • Leckey EH, Smith DM (2015) Host fidelity over geologic time: restricted use of oaks by oak gallwasps. J Paleontol 89:236–244

    Article  Google Scholar 

  • Lenz OK (2000) Paläoökologie eines Küstenmoores aus dem Eozän Mitteleuropas am Beispiel der Wulfersdorfer Flöze und deren Begleitschichten (Helmstedter Oberflözgruppe, Tagebau Helmstedt). Ph.D. thesis, University of Göttingen, Germany

    Google Scholar 

  • Lenz OK, Wilde V, Riegel W (2011) Short-term fluctuations in vegetation and phytoplankton during the Middle Eocene greenhouse climate: a 640-kyr record from the Messel oil shale (Germany). Int J Earth Sci (Geol Rundsch) 100:1851–1874

    Article  Google Scholar 

  • Leopold EB, Clay-Poole ST (2001) Florissant leaf and pollen floras of Colorado compared: climatic implications. In: Evanoff E, Gregory-Wodzicki KM, Johnson KR (eds) Fossil flora and stratigraphy of the Florissant Formation, Colorado. Proc Denver Mus Nat Sci Ser 4:17–69

    Google Scholar 

  • Leopold EB, Liu G (1994) A long pollen sequence of Neogene age. Alaska Range. Quatern Int 22(23):103–140

    Article  Google Scholar 

  • Leopold EB, MacGinitie HD (1972) Development and affinities of Tertiary floras in the Rocky Mountains. In: Graham A (ed) Floristics and Paleofloristics of Asia and Eastern North America. Elsevier Amsterdam

    Google Scholar 

  • Lesquereux L (1892) The flora of the Dakota Group. US Geol Surv Monogr 17:1–400

    Google Scholar 

  • Li HM, Guo SX (1976) The Miocene flora of Nanmuling of Xizang. Acta Paleontol Sin 15(4):598–609 (in Chinese)

    Google Scholar 

  • Lielke K, Manchester SR, Meyer HW (2012) Reconstructing the environment of the northern Rocky Mountains during the Eocene/Oligocene transition: constraints from the palaeobotany and geology of south-western Montana, USA. Acta Palaeobot 52:317–358

    Google Scholar 

  • Liu, YS(C) (2011) Why are the oak acorns from the late Neogene Gray Site so small? Mid Continental Paleobotanical Colloquium vol 28, Raleigh, North Carolina, p 9

    Google Scholar 

  • Liu G, Leopold EB (1992) Paleoecology of a Miocene flora from the Shanwang Formations, Shandong Province, Northern East China. Palynology 16:187–212

    Article  CAS  Google Scholar 

  • Liu, YS(C), Zetter R, Ferguson DK, Mohr B (2007a) Discriminating fossil evergreen and deciduous Quercus pollen: A case study from the Miocene of eastern China. Rev Palaeobot Palynol 145:289–303

    Google Scholar 

  • Liu Z, Engel MS, Grimaldi DA (2007b) Phylogeny and geological history of the cynipoid wasps (Hymenoptera: Cynipoidea). Am Mus Novit 3583:1–48

    Google Scholar 

  • Losa-Quintana JM (1978) Estudio mineralógico y estructural de un fósil de Galicia. An Inst Bot Cavanilles 35:235–243

    Google Scholar 

  • Lozinsky RP (1982) Geology and late Cenozoic history of the Elephant Butte area, Sierra County, New Mexico. M.Sc. thesis, University of New Mexico, New Mexico

    Google Scholar 

  • Lozinsky RP, Hunt AP, Wolberg DL, Lucas SG (1984) Late Cretaceous (Lancian) dinosaurs from the McRae Formation, Sierra County, New Mexico. New Mexico Geol 6:72–77

    Google Scholar 

  • MacGinitie HD (1941) A middle Eocene flora from the central Sierra Nevada. Carnegie Inst Wash Publ 534:1–178

    Google Scholar 

  • MacGinitie HD (1953) Fossil plants of the Florissant Beds, Colorado. Carnegie Inst Wash Publ 599:1–198

    Google Scholar 

  • MacGinitie HD (1962) The Kilgore flora. Univ Calif Publ Geol Sci 35:67–158

    Google Scholar 

  • MacGinitie HD (1969) The Eocene Green River flora of northwestern Colorado and northeastern Utah. Univ Calif Publ Geol Sci 83:1–203

    Google Scholar 

  • Mädel-Angeliewa E (1968) Eichen- und Pappelholz aus der pliozänen Kohle im Gebiet von Baccinello (Toskana, Italien). Geol Jb 86:433–447

    Google Scholar 

  • Magri D, Fineschi S, Bellarosa R, Buonamici A, Sebastiani F, Schirone B, Simeone MC, Vendramin GG (2007) The distribution of Quercus suber chloroplast haplotypes matches the palaeogeographical history of the western Mediterranean. Mol Ecol 16:5259–5266

    Article  CAS  PubMed  Google Scholar 

  • Mai DH (1995) TertiäreVegetationsgeschichte Europas. Gustav Fisher Verlag, Stuttgart

    Google Scholar 

  • Mai DH (2007) The floral change in the Tertiary of Rhön mountains (Germany). Acta Palaeobot 47:135–143

    Google Scholar 

  • Mai DH, Walther H (1991) Die oligozänen und untermiozänen Floren Nordwest-Sachsens und des Bitterfelder Raumes. Abh Staatl Mus Min Geol Dresden 38:1–230

    Google Scholar 

  • Manchester SR (1981) Fossil plants of the Eocene Clarno Nut Beds. Oregon Geol 43:75–81

    Google Scholar 

  • Manchester SR (1994) Fruits and Seeds of the Middle Eocene Nut Beds Flora, Clarno Formation, Oregon. Palaeontographica Am 58:1–205

    Google Scholar 

  • Manchester SR (1999) Biogeographical relationships of North American Tertiary floras. Ann Missouri Bot Gard 86:472–522

    Article  Google Scholar 

  • Manchester SR (2001) Update on the megafossil flora of Florissant, Colorado, USA. In: Evanoff E, Gregory-Wodzicki KM, Johnson KR (eds) Fossil flora and stratigraphy of the Florissant Formation, Colorado. Proc Denver Mus Nat Sci Ser 4(1):137–161

    Google Scholar 

  • Manchester SR (2014) Revisions to Roland Brown’s North American Paleocene flora. Sb Nár Muz Praze Ser B Hist Nat 70:153–210

    Article  Google Scholar 

  • Manchester SR, McIntosh WC (2007) Late Eocene silicified fruits and seeds from the John Day Formation near Post, Oregon. PaleoBios 27:7–17

    Google Scholar 

  • Manchester SR, Chen ZD, Geng BY, Tao JR (2005) Middle Eocene flora of Huadian, Jilin province, Northeastern China. Acta Palaeobot 45:3–26

    Google Scholar 

  • Manos PS, Doyle JJ, Nixon KC (1999) Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol Phylogen Evol 12:333–349

    Article  CAS  Google Scholar 

  • Martinetto E (2015) Monographing the Pliocene and the early Pleistocene carpofloras of Italy: methodological challenges and current progress. Palaeontographica Abt B 293:57–99

    Article  Google Scholar 

  • Martinetto E, Uhl D, Tarabra E (2007) Leaf physiognomic indications for a moist warm-temperate climate in NW Italy during the Messinian (Late Miocene). Palaeogeogr Palaeoclimatol Palaeoecol 253:41–55

    Article  Google Scholar 

  • Martinetto E, Bertini A, Basilici G, Baldanza A, Bizarri R, Cherin M, Gentili S, Pontini MR (2014) The plant record of the Dunarobba and Pietrafitta sites in the Plio-Pleistocene palaeoenvironmental context of Central Italy. Alpine Mediterr Quatern 27(1):29–72

    Google Scholar 

  • Massalongo A, Scarabelli G (1859) Studii sulla flora fossile e Geologia Stratigrafica del Senigalliese. Ignazio Galeati e figlio, Imola

    Google Scholar 

  • Mehrotra RC, Liua X-Q, Lia Ch-S, T, Wanga Y-F, Chauhan MS (2005) Comparison of the tertiary flora of southwest China and northeast India and its significance in the antiquity of the modern Himalayan flora. Rev Palaeobot Palynol 135:145–163

    Google Scholar 

  • McCartan L, Tiffney BH, Wolfe JA, Ager TA, Wing SL, Sirkin LA, Ward LW, Brooks J (1990) Late tertiary floral assemblage from upland gravel deposits of the southern Maryland Coastal Plain. Geology 18:311–314

    Article  Google Scholar 

  • McIntyre DJ (1991) Pollen and spore flora of an Eocene forest, eastern Axel Heiberg Island, N.W.T. Geol Surv Can Bull 403:83–98

    Google Scholar 

  • McIver EE, Basinger JF (1999) Early Tertiary floral evolution in the Canadian high Arctic. Ann Missouri Bot Gard 86:523–545

    Article  Google Scholar 

  • Meller B (1989) Eine Blatt-Flora aus den Obermiozänen Dinotherien-Sanden (Vallesium) von Sprendlingen (Rheinhessen). Doc Nat 54:1–109

    Google Scholar 

  • Meng H-H, Su T, Gao X-Y, Li J, Jiang X-L, Zhou Z-K (2017) Warm-cold colonization: Response to the rising of Himalayan-Tibetan Plateau. Mol Ecol. doi:10.1111/mec.14092

    PubMed  Google Scholar 

  • Menitsky GL (1969) The ancestors and the evolution of Caucasian and Southwest Asian oaks belonging to the subsection Quercus. Bot J 54(11):1675–1688 (in Russian)

    Google Scholar 

  • Menitsky GL (1984) The oaks of Asia. Nauka, Leningrad (in Russian)

    Google Scholar 

  • Meyer KJ (1989) Forschungsbohrung Wursterheide. Pollen und Sporen des Tertiaer aus der Forschungsbohrung Wursterheide, Nordwest-Deutschland. Geol Jahrb Reihe A: Allgemeine und regionale Geologie BRD und Nachbargebiete, Tektonik, Stratigraphie, Palaeontologie 111:523–539

    Google Scholar 

  • Meyer HW, Manchester SR (1997) The Oligocene Bridge Creek Flora of the John Day Formation, Oregon. Univ Calif Publ Geol Sci 141:1–195

    Google Scholar 

  • Michon L, Merle O (2001) The evolution of the Massif Central rift, spatio-temporal distribution of the volcanism. Bull Soc Géol Fr 172:201–211

    Article  Google Scholar 

  • Mindell RA, Stockey RA, Beard G (2007) Cascadiacarpa spinosa gen. et sp. nov. (Fagaceae), castaneoid fruits from the Eocene of Vancouver Island. Canada. Am J Bot 94:351–361

    Article  PubMed  Google Scholar 

  • Mindell RA, Stockey RA, Beard G (2009) Permineralized Fagus nuts from the Eocene of Vancouver Island, Canada. Int J Plant Sci 170:551–560

    Article  Google Scholar 

  • Moktar NB, Mannaï-Tayech B (2016) Climatic control on vegetation and sedimentary dynamics during the Miocene (Burdigalian to Langhian) in northeastern Tunisia. Rev Micropaléontol 59:1–17

    Article  Google Scholar 

  • Momohara A (in press) Influence of mountain formation on floral diversification in Japan based on macrofossil evidence. In: Hoorn C, Antonelli A (eds) Mountain, climate and biodiversity. Wiley

    Google Scholar 

  • Mosbrugger V, Utescher T (1997) The coexistence approach—a method for quantitative reconstructions of tertiary terrestrial paleoclimate data using plant fossils. Palaeogeogr Palaeoclimatol Palaeoecol 134:61–86

    Article  Google Scholar 

  • Moss PT, Greenwood DR, Archibald SB (2005) Regional and local vegetation community dynamics of the Eocene Okanagan Highlands (British Columbia—Washington State). Can J Earth Sci 42:187–204

    Article  Google Scholar 

  • Nĕmejc F, Kvaček Z (1975) Senonian plant macrofossils from the region of Zliv and Hluboká (near České Budĕjovice) in South Bohemia. Universita Karlova, Praha

    Google Scholar 

  • Nixon KC (1993) Infrageneric classification of Quercus (Fagaceae) and typification of section names. Ann Sci For 50(Suppl. 1):25s–34s

    Article  Google Scholar 

  • Nixon KC (1997) Quercus. In: Flora of North America Editorial Committee (ed), Flora of North America, North of Mexico, vol 3. Oxford University Press, New York, pp 445–447

    Google Scholar 

  • Nixon KC (2006) Global and neotropical distribution and diversity of oak (Genus Quercus) and oak forests. In: Kappelle M (ed) Ecology and Conservation of Neotropical Montane Oak Forests. Ecol Stud 185:3–12

    Google Scholar 

  • Ochoa D, Whitelaw M, Liu Y-S, Zavada M (2012) Palynology of Neogene sediments at the Gray Fossil Site, Tennessee, USA: Floristic implications. Rev Palaeobot Palynol 184:36–48

    Article  Google Scholar 

  • Ochoa D, Zavada MS, Liu Y, Farlow JO (2016) Floristic implications of two contemporaneous inland upper Neogene sites in the eastern US: Pipe Creek Sinkhole, Indiana, and the Gray Fossil Site, Tennessee (USA). Palaeobiodiv Palaeoenviron 96:239–254

    Article  Google Scholar 

  • Pais J (1979) La végétation de la basse vallée du Tage (Portugal) au Miocène. Ann Géol Pays Hellén Hors Ser Fasc 2:933–942

    Google Scholar 

  • Palamarev E (1989) Paleobotanical evidences of the Tertiary history and origin of the Mediterranean sclerophyll dendroflora. Plant Syst Evol 162:93–107

    Article  Google Scholar 

  • Palamarev E, Ivanov D (2003) A contribution to the Neogene history of Fagaceae in the Central Balkan area. Acta Palaeobot 43(1):51–59

    Google Scholar 

  • Palamarev E, Kitanov G (1988) Fossil macroflora of the Beli Brjag Coal Basin. In: Velchev V, Markova M, Palamarev E, Vanev S (eds) 100th Anniversary of the National Academy A. Stojanov, Bulgarian Academy of Sciences, Sofia, pp 183–206 (in Bulgarian)

    Google Scholar 

  • Palamarev E, Tsenov B (2004) Genus Quercus in the Late Miocene flora of Baldevo Formation (Southwest Bulgaria): taxonomical composition and palaeoecology. Phytol Balcanica 10(2–3):147–156

    Google Scholar 

  • Pavlyutkin BI (2005) The Mid-Miocene Khanka Flora of the Primorye. Vladivostok, Dalnauka (in Russian)

    Google Scholar 

  • Pavlyutkin BI, Petrenko TI (2010) Stratigrafiya paleogen-neogenovykh otlozhenii Primor’ya. Dal’nauka, Vladivostok (in Russian)

    Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrology and earth system sciences discussions. Eur Geosci Union 11(5):1633–1644

    Google Scholar 

  • Pereira Sieso J, García Gómez E (2002) Bellotas, el alimento de la edad de oro. Arqueoweb 4(2):1–29

    Google Scholar 

  • Pigg KB, DeVore ML (2016) A review of the plants of the Princeton chert (Eocene, British Columbia, Canada). Botany 94:661–681

    Article  Google Scholar 

  • Piton L (1940) Paléontologie du gisement éocène de Menat (Puy-de-Dôme), flore et faune. Mém Soc Hist Nat Auvergne 1:1–303

    Google Scholar 

  • Platen P (1908) Untersuchungen fossiler Hölzer aus dem Westen der Vereinigen Staaten von Nordamerika. Naturforsh Ges Leipzig 34(1–155):161–164

    Google Scholar 

  • Postigo-Mijarra JM, Burjachs F, Manzaneque FG, Morla C (2007) A palaeoecological interpretation of the lower–middle Pleistocene Cal Guardiola site (Terrassa, Barcelona, NE Spain) from the comparative study of wood and pollen samples. Rev Palaeobot Palynol 146:247–264

    Article  Google Scholar 

  • Prakash U (1968) Miocene fossil woods from the Columbia basalts of central Washington III. Palaeontographica Abt B 122:183–200

    Google Scholar 

  • Prakash U, Barghoorn ES (1961a) Miocene fossil woods from the Columbia Basalts of central Washington. J Arnold Arbor 42:165–203

    Article  Google Scholar 

  • Prakash U, Barghoorn ES (1961b) Miocene fossil woods from the Columbia Basalts of central Washington, II. J Arnold Arbor 42:347–362

    Google Scholar 

  • Privé C (1975) Étude de quelques bois de chênes tertiaries du Massif Central, France. Palaeontographica Abt B 153:119–140

    Google Scholar 

  • Privé-Gill C, Cao N, Legrand P (2008) Fossil wood from alluvial deposits (reworked Oligocene) of Limagne at Bussières (Puy-de-Dôme, France). Rev Palaeobot Palynol 149:73–84

    Article  Google Scholar 

  • Quan C, Liu Y-S(C), Utescher T (2012a) Paleogene temperature gradient, seasonal variation and climate evolution of northeast China. Palaeogeogr Palaeoclimatol Palaeoecol 313–314:150–161

    Google Scholar 

  • Quan C, Liu Y-S(C), Utescher T (2012b) Eocene monsoon prevalence over China: a paleobotanical perspective. Palaeogeogr Palaeoclimatol Palaeoecol 365–366:302–311

    Google Scholar 

  • Reid EM, Chandler ME (1933) Flora of the London Clay. British Museum of Natural History, London

    Book  Google Scholar 

  • Rember CW (1991) Stratigraphy and paleobotany of Miocene Lake sediments near Clarkia, Oregon. Ph.D. thesis. Univ Idaho, Moscow

    Google Scholar 

  • Renney KM (1972) The Miocene Temblor Flora of west central California. M.Sc. thesis. Univ California, Davis

    Google Scholar 

  • Roiron P (1983) Nouvelle étude de la macroflore plio-pléistocene de Crespià (Catalogne, Espagne). Geobios 16(6):687–715

    Article  Google Scholar 

  • Roiron P (1992) Flores, végétation et climats du Neogène Mediterranéen: apports de macroflores du Sud de la France et du Nord-Est de l’Espagne. Ph.D. thesis. Univ Montpellier II, Montpellier

    Google Scholar 

  • Sadowski EM, Seyfullah LJ, Sadowski F, Fleischmann A, Hermann Behling H, Schmidt AR (2015) Carnivorous leaves from Baltic amber. PNAS 112(1):190–195

    Article  CAS  PubMed  Google Scholar 

  • Sanz de Siria A (1992) Estudio de la macroflora oligocena de las cercanías de Cervera (Colección Martí Madern del Museo de Geología de Barcelona). Treb Mus Geol Barcelona 2:269–379

    Google Scholar 

  • Sato S (1994) On the palynoflora in the Paleogene in the Ishikari Coal Field, Hokkaido, Japan. J Fac Sci Hokkaido Univ Ser 4. Geol Min 23:555–559

    Google Scholar 

  • Schierenbeck KA (2014) Phylogeography of California, an introduction. Univ Calif Press, Berkeley

    Book  Google Scholar 

  • Schimper NP (1870–1872) Traité de Paléontologie végétale. Ou, la flore du monde primitif dans ses raports avec les formations géologiques et la flore du monde actuel, vol. 2. Baillière et fils, Paris

    Google Scholar 

  • Schwarz O (1936) Entwurf zu einem natürlichen System der Cupuliferen und der Gattung Quercus L. Notizbl Bot Gart Berlin-Dahlem 13(116):1–22

    Article  Google Scholar 

  • Schwarz O (1964) Quercus L. In: Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol. 1: Lycopodiaceae to Platanaceae. Cambridge University Press, Cambridge

    Google Scholar 

  • Scott RA, Wheeler EA (1982) Fossil woods from the Eocene Clarno Formation of Oregon. Bull Int Ass Wood Anatom (NS) 3:135–154

    Google Scholar 

  • Shilin PV (1983) Upper Cretaceous floras of the Lower Syrdarya elevation. Paleontol J 2:105–112 (in Russian)

    Google Scholar 

  • Shunk AJ, Driese SG, Farlow JO, Zavada MS, Zobaa MK (2008) Late Neogene paleoclimate and paleoenvironment reconstructions from the Pipe Creek Sinkhole, Indiana, USA. Palaeogeogr Palaeoclimatol Palaeoecol 274:173–184

    Article  Google Scholar 

  • Shvaryova N, Mamchur A (2003) The Miocene flora of the Velykaya Ugol’ka (Transkarpathians). Lviv, p 144 (in Russian)

    Google Scholar 

  • Simeone MC, Grimm GW, Papini A, Vessella F, Cardoni S, Tordoni E, Piredda R, Franc A, Denk T (2016) Plastome data reveal multiple geographic origins of Quercus Group Ilex. PeerJ 4:e1897. doi:10.7717/peerj.1897

    Article  PubMed  PubMed Central  Google Scholar 

  • Sims HJ, Herendeen PS, Lupia R, Christopher RA, Crane PR (1998) Fossil flowers with Normapolles pollen from the Late Cretaceous of southeastern North America. Rev Palaeobot Palynol 106:131–151

    Article  Google Scholar 

  • Singleton S (2001) Fossil wood of the Oligocene Catahoula Formation, Jasper County, Texas http://www.hgms.org/StartPageHTMLFiles/PaleoPetrifiedWoodArticles/2001–8JasperWoodArticle.html

  • Sittler C (1984) Essai de zonation palynologique des dépôts paléogènes des bassins tributaires de la vallée du Rhône et du Midi Méditerranéen. Géol Fr 1–2:85–90

    Google Scholar 

  • Sittler C, Schuler M (1974) Comparison palynologique de dépôts oligo-miocènes des Limagnes (Massif Central) et de Manosque (Alpes de Provence). Mém Bur Rech Géol Min 78(2):571–578

    Google Scholar 

  • Slodkowska B (2004) Palynological studies of the Paleogene and Neogene deposits from the Pomeranian Lakeland area (NW Poland). Polish Geol Instit Spec Pap 14:1–116

    Google Scholar 

  • Smiley CJ, Rember WC (1985) Composition of the Miocene Clarkia Flora. In: Smiley CJ (ed) Late Cenozoic history of the Pacific Northwest. American Association for the Advancement of Science, Pacific Division, San Francisco

    Google Scholar 

  • Solé de Porta N, de Porta J (1977) Primeros datos palinológicos del Messiniense (=Turoliense) de Arenas del Rey (Provincia de Granada). Stvd Geol Salmant 13:67–88

    Google Scholar 

  • Song S, Krajewska K, Wang Y (2000) The first occurrence of the Quercus section Cerris Spach fruits in the Miocene of China. Acta Palaeobot 40(2):153–163

    Google Scholar 

  • Spackman W (1949) The flora of the Brandon Lignite. Geological aspects and a comparison of the flora with its modern equivalents. Ph.D. thesis, Harvard University, Cambridge, Massachusetts

    Google Scholar 

  • Stephyrtza AG (1990) The families Fagaceae and Aquifoliaceae in the Early Sarmatian flora of Bursuk (Moldavia). Bot J 75(10):1442–1449 (in Russian)

    Google Scholar 

  • Stone GN, Hernández-López A, Nicholls JA, Di Pierro E, Pujade-Villar J, Melika G, Cook JM (2009) Extreme host plant conservatism during at least 20 million years of host plant pursuit by oak gallwasps. Evolution 63:854–869

    Article  CAS  PubMed  Google Scholar 

  • Striegler U (1992) Bemerkungen zu den Eichenblättern des Blättertons von Wischgrund (Miozän, Niederlausitz)—Vorläufige Mitteilung. Doc Nat 70:54–61

    Google Scholar 

  • Stuchlik L, Ziembińska-Tworzydło M, Kohlman-Adamska A, Grabowska I, Słodkowska B, Worobiec E, Durska E (2014) Atlas of the pollen and spores of the Polish Neogene. Volume 4—Angiosperms (2). Polish Academy of Sciences, Kraków

    Google Scholar 

  • Stults DZ, Axsmith B (2015) New plant fossil records and paleoclimate analyses of the late Pliocene Citronelle Formation flora, U.S. Gulf Coast. Palaeontol Electronica 18.3.47A.http://palaeo-electronica.org/content/2015/1318-citronelle-flora-climate

  • Stults DZ, Axsmith B, McNair D, Alford M (2016) Preliminary investigation of a diverse Miocene megaflora from the Hattiesburg Formation, Mississippi. Bot Soc Am, Ann Bot Conference, Savannah Georgia, p 138

    Google Scholar 

  • Suc JP (1980) Contribution à la connaissance du Pliocène et du Pleistocène inferieur des régions mediterranéennes d’Europe Occidentale par l’analyse palynologique des dêpots du Languedoc-Roussillon (Sud de la France) et de la Catalogne (Nord-Est de l’Espagne). Ph.D. thesis, Univ Montpellier II, Montpellier

    Google Scholar 

  • Suc JP, Cravatte J (1982) Étude palynologique du Pliocène de Catalogne (Nord-Est de l’Espagne). Apports à la connaissance de l’histoire climatique de la Méditerranée occidentale et implications chronostratigraphiques. Paléobiol Cont 13(1):1–31

    Google Scholar 

  • Suzuki M, Ohba H (1991) A revision of fossil woods of Quercus and its allies in Japan. J Japan Bot 66(5):255–274

    Google Scholar 

  • Takahashi M, Friis EM, Herendeen PS, Crane PR (2008) Fossil flowers of Fagales from the Kamikitaba locality (early Coniacian); Late Cretaceous of northwestern Japan. Int J Plant Sci 169:899–907

    Article  Google Scholar 

  • Tanai T (1961) Neogene floral change in Japan. J Fac Sci Hokkaido Univ Geol Min 4(11):119–398

    Google Scholar 

  • Tanai T (1970) The Oligocene floras from the Kushiro coal field, Hokkaido, Japan. J Fac Sci Hokkaido Univ Geol Min 4(14):383–514

    Google Scholar 

  • Tanai T (1991) Tertiary climate and vegetation changes in the Northern Hemisphere. J Geogr 100:951–966 (in Japanese, with English abstract)

    Google Scholar 

  • Tanai T (1995) Fagaceous leaves from the Paleogene of Hokkaido, Japan. Bull Natl Sci Mus Tokyo C 21:71–101

    Google Scholar 

  • Tanai T, Suzuki N (1963) Tertiary Floras of Japan (I), Miocene Floras. The Collaborating Assoc Commemorate 80th Anniversary Geol Surv Japan, vol 1, pp 9–149

    Google Scholar 

  • Tanai T, Uemura K (1991) The Oligocene Noda flora from the Yuya-wan area of the western end of Honshu, Japan. Part 1. Bull Natl Sci Mus Tokyo C 17:57–80

    Google Scholar 

  • Tanai T, Uemura K (1994) Lobed oak leaves from the Tertiary of East Asia with reference to the oak phytogeography of the Northern Hemisphere. Trans Proc Palaeontol Soc Japan New Ser 173:343–365

    Google Scholar 

  • Tanai T, Yokoyama A (1975) On the lobed oak leaves from the Miocene Kobe Group, western Honshu, Japan. J Fac Sci Hokkaido Univ Geol Min 4(17):129–141

    Google Scholar 

  • Tao JR, Zhou Z-K, Liu YS (2000) The evolution of the Late Cretaceous-Cenozoic flora in China. Science Press, Beijing (in Chinese with English abstract)

    Google Scholar 

  • Taylor TN, Taylor EL (1993) The biology and evolution of fossil plants. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Taylor DW, HU S, Tiffney BH (2012) Fossil floral and fruit evidence for the evolution of unusual developmental characters in Fagales. Bot J Linn Soc 168:353–376

    Google Scholar 

  • Teodoridis V, Kvaček Z (2006) Palaeobotanical research of the Early Miocene deposits overlying the main coal seam (Libkovice and lom Members) in the Most Basin (Czech Republic). Bull Geosci 81(2):93–113

    Article  Google Scholar 

  • Teodoridis V, Kvaček Z, Sami M, Utescher T, Martinetto E (2015) Palaeoenvironmental analysis of the Messinian macrofossil floras of Tossigniano and Monte Tondo (Vena del Gesso Basin, Romagna Apennines, Northern Italy). Acta Mus Nat Pragae B Hist Nat 71(3–4):249–292

    Google Scholar 

  • Terada K, Handa K (2009) Fossil woods from the Paleogene Kobe Group in Hyogo Prefecture, Japan (preliminary report). Mem Fukui Prefectural Dinosaur Mus 8:17–29

    Google Scholar 

  • Terashima I, Massuzawa T, Ohba H (1993) Photosynthetic characteristic of a giant alpine plant. Rheum nobile Hook F. Thoms. and of some other alpine species measured to 4300 m, in the eastern Himalaya. Nepal Oecol 95:194–201

    Article  Google Scholar 

  • Thomasson JR (1987) Late Miocene plants from northeastern Nebraska. J Paleontol 61:1065–1079

    Article  Google Scholar 

  • Tiffney BH (1977) Contributions to a monograph of the fruit and seed flora of the Brandon Lignite. Ph.D. thesis, Harvard University, Cambridge, Massachusetts

    Google Scholar 

  • Tiffney BH (1994) Re-evaluation of the age of the Brandon Lignite (Vermont USA) based on plant megafossils. Rev Palaeobot Palynol 82:299–315

    Article  Google Scholar 

  • Traverse A (1955) Pollen analysis of the Brandon Lignite of Vermont. US Bur Min Rep Invest 5151:1–107

    Google Scholar 

  • Tucker JM (1974) Patterns of parallel evolution of leaf form in New World oaks. Taxon 23:129–154

    Article  Google Scholar 

  • Uemura K (1988) Late Miocene floras in Northeast Honshu, Japan. Natural Science Museum, Tokyo

    Google Scholar 

  • Uemura K, Doi E, Takahashi F (1999) Plant megafossil assemblage from the Kiwado Formation (Oligocene) from Ouchiyama-kami in Yamaguchi Pref., western Honshu, Japan. Bull Mine City Mus 15:1–59 (in Japanese)

    Google Scholar 

  • Unger F (1842) Synopsis lignorum fossilium plantarum acramphibryarum. In: Endlichen S (ed) Genera plantarum secundum ordines naturales disposita, Supplement 2, Appendix. Apud Fridericum Beck, Vienna

    Google Scholar 

  • Utescher T, Bruch A A, Erdei B, François L, Ivanov D, Jacques F M B, Kern A K, Liu Y-S, Mosbrugger V, Spicer R A (2014) The Coexistence Approach—Theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeogr Palaeoclimatol Palaeoecol 410:58–73

    Google Scholar 

  • Utescher T, Erdei B, Hably L, Mosbrugger V (2017) Late Miocene vegetation of the Pannonian Basin. Palaeogeogr Palaeoclimatol Palaeoecol 467:131–148

    Article  Google Scholar 

  • Utescher T, Mosbrugger V (2007) Eocene vegetation patterns reconstructed from plant diversity - A global perspective. Palaeogeogr Palaeoclimatol Palaeoecol 247:243–271

    Google Scholar 

  • Utescher T, Mosbrugger V (2015) The Palaeoflora database. http://www.geologie.unibonn.de/palaeoflora

  • Váchová Z, Kvaček J (2009) Palaeoclimate analysis of the flora of the Klikov Formation, Upper Cretaceous, Czech Republic. Bull Geosci 84(2):257–268

    Article  Google Scholar 

  • Valle MF, Civis J (1978) Investigaciones palinológicas en el Plioceno inferior de Can Albareda (Barcelona). Palinología 1(extraord):463–468

    Google Scholar 

  • Van Boskirk K (1998) The flora of the Eagle Formation and its significance for Late Cretaceous floristic evolution. Ph.D. thesis, Yale University, New Haven, Connecticut

    Google Scholar 

  • Van der Burgh J (1993) Oaks related to Quercus petraea from the upper Tertiary of the Lower Rhenish Basin. Palaeontographica Abt B 230:195–201

    Google Scholar 

  • Van der Burgh J (1997) Miocene floras in the Lower Rhenish Basin and their ecological interpretation. Rev Palaeobot Palynol 52:299–366

    Article  Google Scholar 

  • Van’t Veer R, Hooghiemstra H (2000). Montane forest evolution during the last 650,000 years in Colombia: a multivariate approach based on pollen record Funza-1. J Quatern Sci 15:329–346

    Google Scholar 

  • Vaudois-Miéja N (1985) La flore des grès à palmiers de l’Ouest de la France. Bull Sect Sci 8:259–273

    Google Scholar 

  • Velitzelos D, Bouchal JM, Denk T (2014) Review of the Cenozoic floras and vegetation of Greece. Rev Palaeobot Palynol 204:56–117

    Article  Google Scholar 

  • Vieira M, Poças E, Pais J, Pereira D (2011) Pliocene flora from S. Pedro da Torre deposits (Minho, NW Portugal). Geodiversitas 33(1):71–85

    Article  Google Scholar 

  • Vikulin SV (1987) A new oak species of subgenus Erythrobalanus (Fagaceae) in early Oligocene flora from Pasekovo (south of the Middle Russian upland). Bot J 72(4):518–522 (in Russian)

    Google Scholar 

  • Vikulin SV (2011) Thermophilic Fagaceae: Quercus, Lithocarpus, Castanopsis from the Late Eocene of the Southern European Russia. Lectures in memory of A.N. Kryshtofovich. Ser. 7:128–147 (in Russian)

    Google Scholar 

  • Vincent PM, Aubert M, Boivin P, Cantagrel JM, Lenat JF (1977) Découverte d’un volcanisme paléocène en Auvergne, les maars de Ménat et leursannexes; étude géologique et géophysique. Bull Soc Géol Fr 19:1057–1070

    Article  CAS  Google Scholar 

  • Von der Brelie G (1968) Zur mikrofloristischen Schichtengliedrung im Rheinischen Braunkohlerevier. Fortschr Geol Rheinl Westfalen 16:85–102

    Google Scholar 

  • Von der Brelie G, Hager H, Weiler H (1981) Pollenflora und Phytoplankton in den Kölner Schichten sowie deren Lithostratigraphie im Siegburger Graben. Fortschr Geol Rheinld u Westf 29:21–48

    Google Scholar 

  • von Linné C (1753) Species Plantarum, vol II. Laurentii Salvii, Stockholm

    Google Scholar 

  • Wallin ET (1983) Stratigraphy and paleoenvironments of the Engle coal field, Sierra County, New Mexico. M.Sc. thesis, New Mexico Institute of Mining and Technology, New Mexico

    Google Scholar 

  • Walther H (1999) Die Tertiärflora von Kleinsaubernitz bei Bauztze. Palaeontographica Abt B 249:63–174

    Google Scholar 

  • Walther H, Eichler B (2010) Die Neogene Flora von Ottendorf-Okrilla bei Dresden. Geol Saxonica 56(2):193–234

    Google Scholar 

  • Walther H, Zastawniak E (1991) Fagaceae from Sosnica and Malczyce (near Wroclaw, Poland). A revision of original materials by Goeppert 1852 and 1855 and a study of new collections. Acta Palaeobot 31:153–199

    Google Scholar 

  • Wang WM (1994) Palaeofloristic and palaeoclimatic implications of Neogene Palynoflora in China. Rev Palaeobot Palynol 82:239–250

    Article  Google Scholar 

  • Wang H (2002) Diversity of Angiosperm leaf megafossils from the Dakota Formation (Cenomanian, Cretaceous), North Western Interior, USA. Ph.D. thesis, University of Florida, Gainesville, Florida

    Google Scholar 

  • Wang W-M, Saito T, Nakagawa T (2001) Palynostratigraphy and climatic implications of Neogene deposits in the Himi area of Toyama Prefecture, Central Japan. Rev Palaeobot Palynol 117:281–295

    Article  Google Scholar 

  • Wang H, Blanchard J, Dilcher DL (2013) Fruits, seeds, and flowers from the Warman clay pit (Middle Eocene Claiborne Group), western Tennessee, USA. Palaeo-Electronica 16(3)31A:1–73. palaeo-electronica.org/content/2013/545-eocene-plants-from-tennessee

  • Ward LF (1899) The Cretaceous Formation of the Black Hills as indicated by the fossil plants. Annu Rep US Geol Surv 19:523–712

    Google Scholar 

  • Webber IE (1933) Woods from the Ricardo Pliocene of Last Chance Gulch, California. Carnegie Inst Wash Publ 412:113–134

    Google Scholar 

  • Wheeler EA, Dillhoff TA (2009) The middle Miocene wood flora of Vantage, Washington, USA. Int Assoc Wood Anat J Suppl 7:1–101

    Google Scholar 

  • Wheeler EA, Manchester SR (2002) Woods of the Eocene Nut Beds Flora. Int Assoc Wood Anat J Suppl 3:1–188

    Google Scholar 

  • Wheeler EA, Scott RA, Barghoorn ES (1978) Fossil dicotyledonous woods from Yellowstone National Park II. J Arnold Arbor 59:1–31

    Google Scholar 

  • Wheeler EA, Manchester SR, Wiemann M (2006) Eocene woods of central Oregon. PaleoBios 26:1–6

    Google Scholar 

  • White JM, Ager TA, Adam DP, Leopold EB, Liu G, Jetté H, Schweger CE (1999) Neogene and Quaternary quantitative palynostratigraphy and paleoclimatology from sections in Yukon and adjacent Northwest Territories and Alaska. Geol Surv Can Bull 543:1–30

    Google Scholar 

  • Wiemann MC, Wheeler EA, Manchester SR, Portier KM (1998) Dicotyledonous wood anatomical characters as predictors of climate. Palaeogeogr Palaeoclimatol Palaeoecol 139:83–100

    Article  Google Scholar 

  • Wilde V (1989) Untersuchungen zur Systematik der Blattreste aus dem Mitteleozan der Grube Messel bei Darmstadt (Hessen, Bundesrepublik Deutschland). Cour Forsch-Inst Senckenberg 115:1–213

    Google Scholar 

  • Wing SL, Alroy J, Hickey LJ (1995) Plant and Mammal diversity in the Paleocene to early Eocene of the Bighorn Basin. Palaeogeogr Palaeoclimatol Palaeoecol 115:117–155

    Article  Google Scholar 

  • Wolfe JA (1966) Tertiary Plants from the Cook Inlet region, Alaska. US Geol Surv Prof Pap 398B:1–32

    Google Scholar 

  • Wolfe JA (1978) A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. Am Sci 66:694–703

    Google Scholar 

  • Wolfe JA (1980) The Miocene Seldovia Point Flora from the Kenai Group, Alaska. US Geol Surv Prof Pap 1105:1–52

    Google Scholar 

  • Wolfe JA (1985) Distribution of major vegetational types during the Tertiary. Am Geophys Union Publ Monogr 32:357–375

    Google Scholar 

  • Worobiec G, Lesiak MA (1998) Plant megafossils from the Neogene deposits of Stawek-1A (Belchatów, Middle Poland). Rev Palaeobot Palynol 101:179–208

    Article  Google Scholar 

  • Writing Group of Cenozic Plant of China (WGCPC) (1978) Fossil Plants from China, within Fossil Plants of China, vol III. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Xia K, Su T, Liu YS(Christopher), Xing YW, Jacques FMB, Zhou ZK (2010) Quantitative climate reconstructions of the late Miocene Xiaolongtan megaflora from Yunnan, southwest China. Palaeogeogr Palaeoclimatol Palaeoecol 276:80–86

    Google Scholar 

  • Xing Y (2010) The Late Miocene Xianfeng flora, Yunnan, Southwest China and its quantitative palaeoclimatic reconstructions. Ph.D. thesis, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China (in Chinese, with English abstract)

    Google Scholar 

  • Xing Y, Hu J, Jacques FMB, Wang L, Su T, Huang Y, Liu Y-U(C), Zhou Z-K (2013) A new Quercus species from the Upper Miocene of southwestern China and its ecological significance. Rev Palaeobot Palynol 193:99–109

    Google Scholar 

  • Xu H, Su T, Zhang S-T, Deng M, Zhou Z-K (2016) The first fossil record of ring-cupped oak (Quercus L. subgenus Cyclobalanopsis (Oersted) Schneider) in Tibet and its paleoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol 442:61–71

    Article  Google Scholar 

  • Yamanoi T (1989) Palynoflora of the Middle Miocene sediments in Noto Peninsula, Central Japan. Professor Hidekuni Matsuo Memorial Vol, pp 5–13 (in Japanese with English abstract)

    Google Scholar 

  • Yao Y-F, Bruch AA, Mosbrugger V, Li C-S (2011) Quantitative reconstruction of Miocene climate patterns and evolution in Southern China based on plant fossils. Palaeogeogr Palaeoclimatol Palaeoecol 304:291–307

    Article  Google Scholar 

  • Zhang YY (1995) Outline of Palaeogene palynofloras of China. Acta Palaeontol Sin 34(2):212–227

    Google Scholar 

  • Zhang SB, Zhou Z-K, Hu H (2005) Photosynthetic performances of Quercus pannosa vary with altitude in Hengduan Mountains, southwest China. Forest Ecol Manag 212:291–301

    Article  Google Scholar 

  • Zheng Z (1990) Végétations et climats néogenes des Alpes maritimes Franco-Italiennes d’après les donées de l’analyse palynologique. Paléobiol Cont 17:217–244

    Google Scholar 

  • Zhilin SG (1989) History of the development of the temperate forest flora in Kazakhstan, U.S.S.R. from the Oligocene to the Early Miocene. Bot Rev 55(4):205–330 (in Russian)

    Article  Google Scholar 

  • Zhou Z-K (1992) A taxonomical revision of fossil evergreen sclerophyllous oaks from China. Acta Bot Sin 34(12):954–961 (in Chinese)

    Google Scholar 

  • Zhou Z-K (1993) The fossil history of Quercus. Acta Bot Yunnanica 15:21–33 (in Chinese, with English abstract)

    Google Scholar 

  • Zhou Z-K, Coombes A (2001) Quercus sect. Heterobalanus—an interesting group of evergreen oaks. Int Dendrology Soc Yearbook 2001:18–24

    Google Scholar 

  • Zhou Z-K, Wilkinson H, Wu ZY (1995) Taxonomical and evolutionary implications of the leaf anatomy and architecture of Quercus L. subgen. Quercus from China. Cathaya 7:1–34

    Google Scholar 

  • Zhou Z-K, Pu CX, Chen WY (2003) Relationship between the distributions of Quercus sect. Heterobalanus (Fagaceae) and uplift of Himalayas. Adv Earth Sci 18(6):884–889 (in Chinese)

    Google Scholar 

  • Zhou Z-K, Yang Q-S, Xia K (2007) Fossil of Quercus sect. Heterobalanus can help explain the uplift of the Himalayas. Chin Sci Bull 52(2):238–247

    Google Scholar 

  • Zittel KA (1891) Traité de Paléontologie, partie 2. Paléophytologie 1. Octave Doin Éditeurs, Paris

    Google Scholar 

Download references

Acknowledgements

This work was performed as part of the research projects: Progress Q45 (Charles University, Prague), CGL2015-68604-P and CSO2015-65216-C2-2-P (MINECO, Spain), and is a contribution to NECLIME (Neogene Climate Evolution in Eurasia , www.neclime.de). The study of fossil oaks from Russia and Central Asia was provided by the Russian grant RFBR N 16-04-00946-a. The study of the Chinese fossil Quercus was supported by the NSFC (U1502231) grant. We thank Eustaquio Gil-Pelegrín, José Javier Peguero-Pina and Domingo Sancho-Knapik (CITA, Zaragoza, Spain); Isabel Rábano, Ana Rodrigo, Enrique Peñalver and Silvia Menéndez (Museo Geominero, IGME, Madrid, Spain); Celia Santos and Ana Bravo (Museo Nacional de Ciencias Naturales—CSIC, Madrid, Spain); Raul Iglesias-González (E.T.S. de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Spain); Jaume Gallemí and Vicent Vicedo (Museu de Geologia de Barcelona, Spain); Sebastián Calzada and Evaristo Aguilar (Museu de Geologia del Seminari de Barcelona, Spain); Manuel Casas-Gallego (CGG Services, Wales, UK); Boglárka Erdei and Lilla Hably (Hungarian Natural History Museum, Budapest); Johanna Kovar-Eder (Staatliches Museum für Naturkunde Stuttgart, Germany); Volker Wilde, Martin Müller and Karin Schmidt (Senckenberg Forschungsinstitut, Frankfurt/M., Germany); Jiří Kvaček (National Museum of Prague, Czech Republic); Edoardo Martinetto, University of Turin, Italia; Patrick Fields and Darlene and Howard Emry (USA); Brian Axsmith, University of South Alabama, Mobile (USA); Elisabeth A. Wheeler, North Carolina State University and InsideWood (USA); Alexey Hvalj (Laboratory of Palaeobotany, Komarov Botanical Institute, St. Petersburg, Russia); Atsushi Yabe (National Museum of Nature and Science, Tokyo, Japan). The authors thank Steven R. Manchester (Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA) and Melanie L . DeVore (Georgia College and State University, Milledgeville, Georgia, USA) for reading a portion of the manuscript and offering criticisms and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Barrón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barrón, E. et al. (2017). The Fossil History of Quercus . In: Gil-Pelegrín, E., Peguero-Pina, J., Sancho-Knapik, D. (eds) Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L.. Tree Physiology, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-69099-5_3

Download citation

Publish with us

Policies and ethics