An Updated Infrageneric Classification of the Oaks: Review of Previous Taxonomic Schemes and Synthesis of Evolutionary Patterns

  • Thomas DenkEmail author
  • Guido W. Grimm
  • Paul S. Manos
  • Min Deng
  • Andrew L. Hipp
Part of the Tree Physiology book series (TREE, volume 7)


In this chapter, we review major classification schemes proposed for oaks by John Claudius Loudon, Anders Sandøe Ørsted, William Trelease, Otto Karl Anton Schwarz, Aimée Antoinette Camus, Yuri Leonárdovich Menitsky, and Kevin C. Nixon. Classifications of oaks (Fig. 2.1) have thus far been based entirely on morphological characters. They differed profoundly from each other because each taxonomist gave a different weight to distinguishing characters; often characters that are homoplastic in oaks. With the advent of molecular phylogenetics our view has considerably changed. One of the most profound changes has been the realisation that the traditional split between the East Asian subtropical to tropical subgenus Cyclobalanopsis and the subgenus Quercus that includes all other oaks is artificial. The traditional concept has been replaced by that of two major clades, each comprising three infrageneric groups: a Palearctic-Indomalayan clade including Group Ilex (Ilex oaks), Group Cerris (Cerris oaks) and Group Cyclobalanopsis (cycle-cup oaks), and a predominantly Nearctic clade including Group Protobalanus (intermediate or golden cup oaks), Group Lobatae (red oaks) and Group Quercus (white oaks, with most species in America and some 30 species in Eurasia). In addition, recent phylogenetic studies identified two distinct clades within a wider group of white oaks: the Virentes oaks of North America and a clade with two disjunct endemic species in western Eurasia and western North America, Quercus pontica and Q. sadleriana. The main morphological feature characterising these phylogenetic lineages is pollen morphology, a character overlooked in traditional classifications. This realisation, along with the now available (molecular-)phylogenetic framework, opens new avenues for biogeographic, ecological and evolutionary studies and a re-appraisal of the fossil record. We provide an overview about recent advances in these fields and outline how the results of these studies contribute to the establishment of a unifying systematic scheme of oaks. Ultimately, we propose an updated classification of Quercus recognising two subgenera with eight sections. This classification considers morphological traits, molecular-phylogenetic relationships, and the evolutionary history of one of the most important temperate woody plant genera.



We thank John McNeill for valuable comments. This work was supported by the Swedish Research Council (VR, grant to TD). GWG acknowledges financial support by the AMS Wien.


  1. Akkemik Ü, Yaman B (2012) Wood anatomy of Eastern Mediterranean species. Verlag Kessel, RemagenGoogle Scholar
  2. Andreánszky G (1959) Die Flora der Sarmatischen Stufe in Ungarn. Akadémiai Kiadó, BudapestGoogle Scholar
  3. Axelrod DI (1983) Biogeography of oaks in the Arcto-Tertiary Province. Ann Missouri Bot Gard 70:629–657CrossRefGoogle Scholar
  4. Bentham G, Hooker JD (1880) Genera plantarum, vol 3. L. Reeve & Co., Williams & Norgate, LondonGoogle Scholar
  5. Borgardt SJ, Nixon KC (2003) A comparative flower and fruit anatomical study of Quercus acutissima, a biennial-fruiting oak from the Cerris group (Fagaceae). Am J Bot 90:1567–1584CrossRefPubMedGoogle Scholar
  6. Borgardt SJ, Pigg KB (1999) Anatomical and developmental study of petrified Quercus (Fagaceae) fruits from the Middle Miocene, Yakima Canyon, Washington, USA. Am J Bot 86:307–325CrossRefPubMedGoogle Scholar
  7. Bouchal J, Zetter R, Grímsson F, Denk T (2014) Evolutionary trends and ecological differentiation in early Cenozoic Fagaceae of western North America. Am J Bot 101:1–18CrossRefGoogle Scholar
  8. Britton NL, Brown A (1913) An illustrated flora of northern United States, Canada and British possessions. Scribner & Sons, New YorkGoogle Scholar
  9. Browicz K, Zieliński J (1982) Chorology of trees and shrubs in South-West Asia and adjacent regions. Polish Scientific Publishers, Warsaw, PoznanGoogle Scholar
  10. Camus A (1936–1938) Les Chênes. Monographie du genre Quercus. Tome I. Genre Quercus, sous-genre Cyclobalanopsis, sous-genre Euquercus (sections Cerris et Mesobalanus). Texte. Paul Lechevalier, ParisGoogle Scholar
  11. Camus A (1938–1939) Les Chênes. Monographie du genre Quercus. Tome II. Genre Quercus, sous-genre Euquercus (sections Lepidobalanus et Macrobalanus). Texte. Paul Lechevalier, ParisGoogle Scholar
  12. Camus A (1952–1954) Les Chênes: Monographie du genre Quercus. Tome III. Genre Quercus: sous-genre Euquercus (sections Protobalanus et Erythrobalanus) et genre Lithocarpus. Texte. Paul Lechevalier, ParisGoogle Scholar
  13. Cavender-Bares J, Gonzalez-Rodriguez A, Eaton DAR, Hipp AL, Beulke A, Manos PS (2015) Phylogeny and biogeography of the American live oaks (Quercus subsection Virentes): a genomic and population genetics approach. Mol Ecol 24:3668–3687CrossRefPubMedGoogle Scholar
  14. Costa Tenorio M, Morla Juarista C, Sáinz Ollero H (2001) Los bosques Ibéricos. Una interpretación geobotánica. Planeta, BarcelonaGoogle Scholar
  15. Crepet WL (1989) History and implications of the early North American fossil record of Fagaceae. In: Crane PR, Blackmore S (eds) Evolution, systematics, and fossil history of the Hamamelidae Vol 2: ‘Higher’ Hamamelidae. Systematic Association Special Vol 40B. Clarendon, Oxford, pp 45–66Google Scholar
  16. Daghlian CP, Crepet WL (1983) Oak catkins, leaves and fruits from the Oligocene Catahoula Formation and their evolutionary significance. Am J Bot 70:639–649CrossRefGoogle Scholar
  17. de Candolle A (1862a) Étude sur l’espèce á l’occasion d’une révision de la famille des Cupulifères. Arch Sci Phys Nat II 15:211–237, 326–365Google Scholar
  18. de Candolle A (1862b) Note sur un charactère observé dans les fruits des chênes. Ann sci nat ser 4(18):49–58Google Scholar
  19. Deng M (2007) Anatomy, taxonomy, distribution and phylogeny of Quercus Subg. Cyclobalanopsis (Oersted) Schneid. (Fagaceae). Ph.D. thesis, Kunming Institute of Botany, Chinese Academy of Sciences and Graduate School of Chinese Academy of Sciences, BeijingGoogle Scholar
  20. Deng M, Zhou Z-K, Chen Y-Q, Sun W-B (2008) Systematic significance of the development and anatomy of flowers and fruit of Quercus schottkyana (subgenus Cyclobalanopsis: Fagaceae). Int J Plant Sci 169:1261–1277CrossRefGoogle Scholar
  21. Deng M, Hipp A, Song Y-G, Li Q-S, Coombes A, Cotton A (2015) Leaf epidermal features of Quercus subgenus Cyclobalanopsis (Fagaceae) and their systematic significance. Bot J Linn Soc 176:224–259CrossRefGoogle Scholar
  22. Deng M, Jiang X-L, Song Y-G, Coombes A, Yang X-R, Xiong Y-S, Li Q-S (2017) Leaf epidermal features of Quercus Group Ilex (Fagaceae) and their application to species identification. Rev Palaeobot Palynol 237:10–36CrossRefGoogle Scholar
  23. Denk T, Grimm GW (2009) Significance of pollen characteristics for infrageneric classification and phylogeny in Quercus (Fagaceae). Int J Plant Sci 170:926–940CrossRefGoogle Scholar
  24. Denk T, Grimm GW (2010) The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon 59:351–366Google Scholar
  25. Denk T, Meller B (2001) Systematic significance of the cupule/nut complex in living and fossil Fagus. Int J Plant Sci 162:869–897CrossRefGoogle Scholar
  26. Denk T, Tekleva MV (2014) Pollen morphology and ultrastructure of Quercus with focus on Group Ilex (= Quercus Subgenus Heterobalanus (Oerst.) Menitsky): implications for oak systematics and evolution. Grana 53:255–282CrossRefGoogle Scholar
  27. Denk T, Grímsson F, Zetter R (2012) Fagaceae from the early Oligocene of Central Europe: persisting New World and emerging Old World biogeographic links. Rev Palaeobot Palynol 169:7–20CrossRefGoogle Scholar
  28. Denk T, Velitzelos D, Güner HT, Bouchal JM, Grímsson F, Grimm GW (2017) Taxonomy and palaeoecology of two widespread western Eurasian Neogene sclerophyllous oak species: Quercus drymeja Unger and Q. mediterranea Unger. Rev Palaeobot Palynol 241:98–128CrossRefGoogle Scholar
  29. Dumortier B-C (1829) Florula Belgica. J. Casterman, TournaiGoogle Scholar
  30. Engelmann G (1880) The acorns and their germination. Trans Acad Sci St Louis 4:190–192Google Scholar
  31. Fang J, Wang Z, Tang Z (2009) Atlas of woody plants in China. Volumes 1–3 and index. Higher Education Press, BeijingGoogle Scholar
  32. Farr ER, Zijlstra G (2017) Index Nominum Genericorum (Plantarum). 1996+. Last accessed 25 June 2017
  33. Flora of China (2016) eFloras: Flora of China. Last accessed 2 Nov 2016
  34. Flora of North America Editorial Commitee (1997) Flora of North America north of Mexico, vol 3. Oxford University Press, New YorkGoogle Scholar
  35. Gagnidze R, Urushadze T, Pietzarka U (2014) Quercus pontica Enzyklopädie der Holzgewächse: Handbuch und Atlas der Dendrologie 63. Erg. Lfg. 04/13. Wiley-VCH, Weinheim, pp 1–8Google Scholar
  36. Govaerts R, Frodin DG (1998) World checklist and bibliography of Fagales (Betulaceae, Corylaceae, Fagaceae and Ticodendraceae). Royal Botanic Gardens, KewGoogle Scholar
  37. Grímsson F, Zetter R, Grimm GW, Krarup Pedersen G, Pedersen AK, Denk T (2015) Fagaceae pollen from the early Cenozoic of West Greenland: revisiting Engler’s and Chaney’s Arcto-Tertiary hypotheses. Plant Syst Evol 301:809–832CrossRefPubMedGoogle Scholar
  38. Grímsson F, Grimm GW, Zetter R, Denk T (2016) Cretaceous and Paleogene Fagaceae from North America and Greenland: evidence for a Late Cretaceous split between Fagus and the remaining Fagaceae. Acta Palaeobot 56:247–305Google Scholar
  39. Hesse M, Halbritter H, Zetter R, Weber M, Buchner R, Frosch-Radivo A, Ulrich S (2009) Pollen terminology—an illustrated handbook. Springer, Wien, New YorkGoogle Scholar
  40. Hipp AL, Eaton DAR, Cavender-Bares J, Fitzek E, Nipper R, Manos PS (2014) A framework phylogeny of the American oak clade based on sequenced RAD data. PLoS ONE 9:e93975CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hipp AL, Manos P, McVay JD, Cavender-Bares J, González-Rodriguez A, Romero-Severson J, Hahn M, Brown BH, Budaitis B, Deng M, Grimm G, Fitzek E, Cronn R, Jennings TL, Avishai M, Simeone MC (2015) A phylogeny of the world’s oaks. Botany 2015, Edmonton. Available at
  42. Hipp AL, Manos PS, González-Rodríguez A, Hahn M, Kaproth M, McVay JD, Valencia Avalos S, Cavender-Bares J (2017) Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytol. doi: 10.1111/nph.14773
  43. Hofmann C-C (2010) Microstructure of Fagaceae pollen from Austria (Paleocene/Eocene boundary) and Hainan Island (?middle Eocene). 8th European Palaeobotany-Palynology Conference. Hungarian Natural History Museum, Budapest, p 119Google Scholar
  44. Huang C, Zhang Y, Bartholomew B (1999) Fagaceae. In: Wu Z-Y, Raven PH (eds) Flora of China 4. Cycadaceae through Fagaceae. Science Press and Missouri Botanical Garden Press, Beijing, St. Louis, pp 314–400Google Scholar
  45. Hubert F, Grimm GW, Jousselin E, Berry V, Franc A, Kremer A (2014) Multiple nuclear genes stabilize the phylogenetic backbone of the genus Quercus. Syst Biodivers 12:405–423CrossRefGoogle Scholar
  46. Huzioka K, Takahashi E (1973) The Miocene flora of Shimonoseki, Southwest Honshu, Japan. Bull Nat Sci Mus 16:115–148Google Scholar
  47. Jähnichen H (1966) Morphologisch-anatomische Studien über strukturbietende, ganzrandige Eichenblätter des Subgenus EuquercusQuercus lusatica n. sp.—im Tertiär Mitteleuropas. Monatsber Dtsch Akad Wiss Berlin 8:477–512Google Scholar
  48. Jensen RJ (1997) Quercus Sect. Lobatae G. Don in J. C. Loudon, Hort. Brit. 385. 1830. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico Vol 3. Missouri Botanical Garden Press, St. Louis, pp 447–468Google Scholar
  49. Jia H, Jin P, Wu J, Wang Z, Sun B (2015) Quercus (subg. Cyclobalanopsis) leaf and cupule species in the late Miocene of eastern China and their paleoclimatic significance. Rev Palaeobot Palynol 219:132–146CrossRefGoogle Scholar
  50. Kmenta M (2011) Die Mikroflora der untermiozänen Fundstelle Altmittweida, Deutschland. M.Sc. thesis, University of Vienna, Vienna, Austria.
  51. Kovar-Eder J, Meller B (2003) The plant assemblages from the main seam parting of the western sub-basin of Oberdorf, N Voitsberg, Styria, Austria (Early Miocene). Cour Forschungsinst Senckenberg 241:281–311Google Scholar
  52. Kremer A, Abbott AG, Carlson JE, Manos PS, Plomion C, Sisco P, Staton ME, Ueno S, Vendramin GV (2012) Genomics of Fagaceae. Tree Genet Genomes 8:583–610Google Scholar
  53. Krishtofovich AN, Palibin IV, Shaparenko KK, Yarmolenko AV, Baykovskaya TN, Grubov VI, Iljinskaya IA (1956) Oligotsenovaya flora gory Ashutas v Kazakhstane (Oligocene flora of Ashutas Mount in Kazakhstan). Komarov Bot Inst Acad Sci SSSR Publ 145 Ser 8 Palaeobot 1:1–241 (in Russian)Google Scholar
  54. Kvaček Z, Walther H (1989) Palaeobotanical studies in Fagaceae of the European tertiary. Plant Syst Evol 162:213–229CrossRefGoogle Scholar
  55. Kvaček Z, Walther H (2010 [2012]) European Tertiary Fagaceae with chinquapin-like foligae and leaf epidermal characteristics. Feddes Repert 121:248–267Google Scholar
  56. Kvaček Z, Velitzelos D, Velitzelos E (2002) Late Miocene Flora of Vegora, Macedonia, N. Greece. Korali Publications, AthensGoogle Scholar
  57. le Hardÿ de Beaulieu A, Lamant T (2010) Guide illustré des Chênes. 2 vols. Edilens, GeerGoogle Scholar
  58. Linné C (1753) Species Plantarum. Vol 2. Laurentii Salvii, StockholmGoogle Scholar
  59. Loudon JC (1830) Loudon’s Hortus Brittanicus. A. & R. Spottiswoode, LondonGoogle Scholar
  60. Loudon JC (1838) Arboretum et Fruticetum Brittanicum, vol III. Printed for the author by A. Spottiswoode, LondonGoogle Scholar
  61. Loudon JC (1839) Part II. The Jussieuean arrangement. In: Loudon JC (ed) Loudon’s Hortus Brittanicus A new edition. A. Spottiswode, London, pp 491–704Google Scholar
  62. Mai DH (1995) Tertiäre Vegetationsgeschichte Europas. Gustav Fischer Verlag, Jena, Stuttgart, New YorkGoogle Scholar
  63. Makino M, Hayashi R, Takahara H (2009) Pollen morphology of the genus Quercus by scanning electron microscope. Sci Rep Kyoto Prefect Univ Life Environ Sci 61:53–81Google Scholar
  64. Manchester SR (1994) Fruits and seeds of the Middle Eocene nut beds flora, Clarno Formation, Oregon. Palaeontogr Am 58:1–205Google Scholar
  65. Manos PS (1993) Foliar trichome variation in Quercus section Protobalanus (Fagaceae). SIDA Contr Bot 15:391–403Google Scholar
  66. Manos PS (1997) Quercus Sect. Protobalanus (Trelease) A.Camus. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico, vol 3. Missouri Botanical Garden Press, St. Louis, p 468ffGoogle Scholar
  67. Manos PS (2016) Systematics and biogeography of the American oaks. Int Oak J 27:23–36Google Scholar
  68. Manos PS, Doyle JJ, Nixon KC (1999) Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol Phyl Evol 12:333–349Google Scholar
  69. Manos PS, Zhou ZK, Cannon CH (2001) Systematics of Fagaceae: Phylogenetic tests of reproductive trait evolution. Int J Plant Sci 162:1361–1379CrossRefGoogle Scholar
  70. Manos PS, Cannon CH, Oh S-H (2008) Phylogenetic relationships and taxonomic status of the paleoendemic Fagaceae of Western North America: recognition of a new genus, Notholithocarpus. Madroño 55:181–190CrossRefGoogle Scholar
  71. McIver EE, Basinger JF (1999) Early Tertiary floral evolution in the Canadian High Arctic. Ann Missouri Bot Gard 86:523–545CrossRefGoogle Scholar
  72. McVay JD, Hipp AL, Manos PS (2017) A genetic legacy of introgression confounds phylogeny and biogeography in oaks. Proc R Soc B 284:20170300CrossRefPubMedGoogle Scholar
  73. Menitsky YL (1984) Duby Azii. Nauka, Leningrad [St. Petersburg]Google Scholar
  74. Menitsky YL (2005) Oaks of Asia [translated from the Russian original of 1984]. Science Publishers, Enfield, NHGoogle Scholar
  75. Muller CH (1961) The live oaks of the series Virentes. Am Midland Nat 65:17–39CrossRefGoogle Scholar
  76. Neophytou C, Dounavi A, Fink S, Aravanopoulos FA (2010) Interfertile oaks in an island environment: I. High nuclear genetic differentiation and high degree of chloroplast DNA sharing between Q. alnifolia and Q. coccifera in Cyprus. A multipopulation study. Eur J For Res 130:543–555CrossRefGoogle Scholar
  77. Neophytou C, Aravanopoulos FA, Fink S, Dounavi A (2011) Interfertile oaks in an island environment: II. Limited hybridization Quercus alnifolia Poech and Q. coccifera L. in a mixed stand. Eur J For Res 130:623–635CrossRefGoogle Scholar
  78. Nixon KC (1993) Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Ann Sci For 50:25s–34sCrossRefGoogle Scholar
  79. Nixon KC (1997) Fagaceae. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico. Oxford University Press, New York, p. 436–537Google Scholar
  80. Nixon KC (2002) The oak biodiversity of California and adjacent regions. In: Standiford RB, McCreary D, Purcell KL (eds) Proceedings of the 5th Symposium on Oak Woodlands: Oaks in California’s Changing Landscape. USDA Forest Service General Technical Report PSW-GTR-184. Pacific Southwest Research Station, San DiegoGoogle Scholar
  81. Nixon KC, Muller CH (1997) Quercus Sect. Quercus Linneus. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico Vol 3. Missouri Botanical Garden Press, St. LouisGoogle Scholar
  82. Oh S-H, Manos PS (2008) Molecular phylogenetics and cupule evolution in Fagaceae as inferred from nuclear CRABS CLAW sequences. Taxon 57:434–451Google Scholar
  83. Ohwi J (1965) Flora of Japan (English ed., edited by F. G. Meyer and E. H. Walker). Smithsonian Institution, Washington, DCGoogle Scholar
  84. Ørsted AS (1866–1867) Bidrag til egeslægtens systematik. Vidensk Medd naturhist Foren Kjöbenhavn 28:11–88Google Scholar
  85. Ørsted AS (1871) Bidrag til Kundskab om Egefamilien. Kongl Danske Vidensk Selsk Biol Skr 5 naturvidensk math Afd 6:331–538Google Scholar
  86. Pavlyutkin BI (2015) The genus Quercus (Fagaceae) in the early Oligocene flora of Kraskino, Primorskii Region. Paleontol J 49:668–676CrossRefGoogle Scholar
  87. Pavlyutkin BI, Chekryzhov IU, Petrenko TI (2014) Geology and floras of lower Oligocene in the Primorye. Dalnauka, VladivostokGoogle Scholar
  88. Pearse IS, Hipp AL (2009) Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks. Proc Natl Acad Sci 106:18097–18102CrossRefPubMedPubMedCentralGoogle Scholar
  89. Pham KK, Hipp AL, Manos PS, Cronn RC (2017) A time and a place for everything: phylogenetic history and geography as joint predictors of oak plastome phylogeny. Genome. doi: 10.1139/gen-2016-0191 Google Scholar
  90. Rowley JR (1996) Exine origin, development and structure in pteridophytes, gymnosperms and angiosperms. In: Jansonius J, McGregor DC (eds) Palynology, Principles and Applications. American Association of Stratigraphic Palynologists Foundation, Dallas, pp 443–462Google Scholar
  91. Rowley JR, Claugher D (1991) Receptor-independent sporopollenin. Bot Acta 104:316–323Google Scholar
  92. Rowley JR, Gabarayeva NI (2004) Microspore development in Quercus robur (Fagaceae). Rev Palaeobot Palynol 132:115–132CrossRefGoogle Scholar
  93. Rowley JR, Skvarla JJ, Ferguson IK, El-Gazhaly G (1979) Pollen wall fibrils lacking primary receptors for sporopollenin. In: Bailey GW (ed) In: Proceedings of the 37th Annual Meeting Electron Microscopy Society of America, San Antonio, TX, August 13–17, 1979. Claitor, Baton Rouge, pp 340–341Google Scholar
  94. Schneider CK (1906) Illustriertes Handbuch der Laubholzkunde, vol 1. Gustav Fischer, JenaGoogle Scholar
  95. Schwarz O (1934) In: Krause, K.: Beiträge zur Flora Kleinasiens, IV. Feddes Repert 33: 321–328Google Scholar
  96. Schwarz O (1936) Entwurf zu einem natürlichen System der Cupuliferen und der Gattung Quercus L. Notizbl Bot Gart Mus Berlin-Dahlem Bd. 13 Nr. 116: 1–22Google Scholar
  97. Schwarz O (1937) Monographie der Eichen Europas und des Mittelmeergebietes. Repertorium specierum nov. regni vegetabilis, Sonderbeihefte D. Selbstverlag Friedrich Fedde, Dahlem-BerlinGoogle Scholar
  98. Simeone MC, Grimm GW, Papini A, Vessella F, Cardoni S, Tordoni E, Piredda R, Franc A, Denk T (2016) Plastome data reveal multiple geographic origins of Quercus Group Ilex. PeerJ 4:e1897CrossRefPubMedPubMedCentralGoogle Scholar
  99. Solomon AM (1983a) Pollen morphology and plant taxonomy of red oaks in eastern North America. Am J Bot 70:495–507CrossRefGoogle Scholar
  100. Solomon AM (1983b) Pollen morphology and plant taxonomy of white oaks in eastern North America. Am J Bot 70:481–492CrossRefGoogle Scholar
  101. Song SY, Krajewska K, Wang YF (2000) The first occurrence of the Quercus section Cerris Spach fruits in the Miocene of China. Acta Palaeobot 40:153–163Google Scholar
  102. Spach E (1842) Histoire naturelle des végétaux. Phanerogames, vol 11. Schneider & Langrand, ParisGoogle Scholar
  103. Spicer RA, Herman AB, Liao W, Spicer TEV, Kodrul TM, Yang J, Jin J (2014) Cool tropics in the Middle Eocene: evidence from the Changchang Flora, Hainan Island, China. Palaeogeogr Palaeoclimatol Palaeoecol 412:1–16CrossRefGoogle Scholar
  104. Sprague TA (1929) International Botanical Congress Cambridge (England), 1930. Nomenclature proposals by British botanists. Wyman & Sons, LondonGoogle Scholar
  105. Standley PC (1922) Trees and shrubs of Mexico. Contr US Natl Herb 23. Government Printing Office, WashingtonGoogle Scholar
  106. Tanai T, Uemura K (1994) Lobed oak leaves from the Tertiary of East Asia with reference to the oak phytogeography of the northern hemisphere. Trans Proc Palaeontol Soc Japan 173:343–365Google Scholar
  107. Trelease W (1916) The oaks of America. Proc Natl Acad Sci 2:626–629CrossRefPubMedPubMedCentralGoogle Scholar
  108. Trelease W (1924) The American Oaks. Mem Natl Acad Sci 20. Washington Government Printing Office, Washington, DCGoogle Scholar
  109. Tschan G, Denk T (2012) Trichome types, foliar indumentum and epicuticular wax in the Mediterranean gall oaks, Quercus subsection Galliferae (Fagaceae): implications for taxonomy, ecology and evolution. Bot J Linn Soc 139:611–644CrossRefGoogle Scholar
  110. Walther H, Zastawniak E (1991) Fagaceae from Sosnica and Malczyce (near Wroc3łav, Poland). A revision of original materials by Goeppert 1852 and 1855 and a study of new collections. Acta Palaeobot 31:153–199Google Scholar
  111. Writing Group of Cenozoic Plants of China (WGCPC) (1978) Cenozoic plants from China. Fossil Plants of China 3. Science Press, Beijing (in Chinese)Google Scholar
  112. Xiang X-G, Wang W, Li R-Q, Lin L, Liu Y, Zhou Z-K, Li Z-Y, Chen Z-D (2014) Large-scale phylogenetic analyses reveal fagalean diversification promoted by the interplay of diaspores and environments in the Paleogene. Perspect Plant Ecol Syst 16:101–110CrossRefGoogle Scholar
  113. Xing Y, Onstein RE, Carter RJ, Stadler T, Linder HP (2014) Fossils and large molecular phylogeny show that the evolution of species richness, generic diversity, and turnover rates are disconnected. Evolution 68:2821–2832CrossRefPubMedGoogle Scholar
  114. Yabe A (2008) Plant megafossil assemblage from the lower Miocene Ito-o Formation, Fukui Prefecture, Central Japan. Mem Fukui Prefect Dinosaur Mus 7:1–24Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Thomas Denk
    • 1
    Email author
  • Guido W. Grimm
    • 2
  • Paul S. Manos
    • 3
  • Min Deng
    • 4
  • Andrew L. Hipp
    • 5
    • 6
  1. 1.Swedish Museum of Natural HistoryStockholmSweden
  2. 2.OrléansFrance
  3. 3.Duke UniversityDurhamUSA
  4. 4.Shanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
  5. 5.The Morton ArboretumLisleUSA
  6. 6.The Field MuseumChicagoUSA

Personalised recommendations