Biofuels from Microalgae: Energy and Exergy Analysis for the Biodiesel Case

  • Daissy Lorena Restrepo-Serna
  • Mariana Ortiz-Sánchez
  • Carlos Ariel Cardona-Alzate
Part of the Green Energy and Technology book series (GREEN)


Nowadays, the microalgae have been gaining importance due to their different applications in the biofuel, food, and pharmaceutical industries. One of the applications that is commonly proposed for microalgae oil is the transformation into biodiesel through transesterification. This biodiesel is a biofuel that present energy yields similar to traditional diesel, generating an alternative to replace a fuel from petrochemical origin. The objective of this work is to analyze deeply a process for biodiesel production from microalgae oil. The process includes the cultivation, harvesting, and extraction stages for the oil. In this case, the software Aspen Plus is employed for simulation. From the results obtained (mass and energy balances), the energy, exergy, and economic and environmental analysis of the process are carried out through the development of different scenarios. Last allow to evaluate the energy, economic and environmental viability of this type of processes. As a result, this work shows the challenges to be overcome to make possible the real introduction of microalgae fuels.


Biodiesel Biofuel Microalgae Exergy analysis Energy analysis 


  1. Abad, S., & Turon, X. (2012). Valorization of biodiesel derived glycerol as a carbon source to obtain added-value metabolites: Focus on polyunsaturated fatty acids. Biotechnology Advances, 30(3), 733–741.CrossRefGoogle Scholar
  2. Adam, F., Abert-Vian, M., Peltier, G., & Chemat, F. (2012). “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: A green, clean and scalable process. Bioresource Technology, 114, 457–465.CrossRefGoogle Scholar
  3. Bambase, M. E., Nakamura, N., Tanaka, J., & Matsumura, M. (2007). Kinetics of hydroxide-catalyzed methanolysis of crude sunflower oil for the production of fuel-grade methyl esters. Journal of Chemical Technology and Biotechnology, 82(3), 273–280.CrossRefGoogle Scholar
  4. Barros, A. I., Gonçalves, A. L., Simões, M., & Pires, J. C. M. (2015). Harvesting techniques applied to microalgae: A review. Renewable and Sustainable Energy Reviews, 41, 1489–1500.CrossRefGoogle Scholar
  5. Becker, E. (1994). Microalgae—biotechnology and microbiology. Journal of Experimental Marine Biology and Ecology, 183, 300–301.CrossRefGoogle Scholar
  6. Bilad, M. R., Vandamme, D., Foubert, I., Muylaert, K., & Vankelecom, I. F. J. (2012). Harvesting microalgal biomass using submerged microfiltration membranes. Bioresource Technology, 111, 343–352.CrossRefGoogle Scholar
  7. Bosma, R., Van Spronsen, W. A., Tramper, J., & Wijffels, R. H. (2003). Ultrasound, a new separation technique to harvest microalgae. Journal of Applied Phycology, 15(2–3), 143–153.CrossRefGoogle Scholar
  8. Bumbak, F., Cook, S., Zachleder, V., Hauser, S., & Kovar, K. (2011). Best practices in heterotrophic high-cell-density microalgal processes: Achievements, potential and possible limitations. Applied Microbiology and Biotechnology. Scholar
  9. Cerón-Salazar, I., & Cardona-Alzate, C. (2011). Integral evaluation process for obtaining pectin and essential oil from orange peel. Inginería y Ciencia, 7(13), 1794–9165.Google Scholar
  10. Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102(1), 71–81.CrossRefGoogle Scholar
  11. Chen, F. (1996). High cell density culture of microalgae in heterotrophic growth. Trends in Biotechnology, 14(11), 421–426.CrossRefGoogle Scholar
  12. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.CrossRefGoogle Scholar
  13. Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6), 1146–1151.CrossRefGoogle Scholar
  14. Dai, Y. M., Chen, K. T., & Chen, C. C. (2014). Study of the microwave lipid extraction from microalgae for biodiesel production. Chemical Engineering Journal, 250, 267–273.CrossRefGoogle Scholar
  15. Dassey, A.J., Theegala, C.S. (2012). Cost Analysis of Microalgal Harvesting for Biofuel Production. 2012 Dallas, Texas, July 29 - August 1, 2012. St. Joseph, Mich.: ASABE.
  16. Dávila, J. A., Hernández, V., Castro, E., & Cardona, C. A. (2014). Economic and environmental assessment of syrup production. Colombian case. Bioresource Technology, 161, 84–90.CrossRefGoogle Scholar
  17. Demirbas, A. (2005). Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress in Energy and Combustion Science.CrossRefGoogle Scholar
  18. Drexler, I. L. C., & Yeh, D. H. (2014). Membrane applications for microalgae cultivation and harvesting: A review. Reviews in Environmental Science & Biotechnology, 13(4), 487–504.CrossRefGoogle Scholar
  19. Edzwald, J. K. (1993). Algae, bubbles, coagulants, and dissolved air flotation. Water Science and Technology, 27, 67–81.Google Scholar
  20. Emets, S. V., Hoo, K. A., & Mann, U. (2006). A modified hierarchy for designing chemical processes. Industrial and Engineering Chemistry Research, 45, 5037–5043.CrossRefGoogle Scholar
  21. Fradique, M., Batista, A. P., Nunes, M. C., Gouveia, L., Bandarra, N. M., & Raymundo, A. (2013). Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA’s source. LWT - Food Science and Technology, 50(1), 312–319.CrossRefGoogle Scholar
  22. Ghasemi Naghdi, F., González González, L. M., Chan, W., & Schenk, P. M. (2016). Progress on lipid extraction from wet algal biomass for biodiesel production. Microbial Biotechnology, 9(6), 718–726.CrossRefGoogle Scholar
  23. Gouveia, L., & Oliveira, A. C. (2009). Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology and Biotechnology, 36(2), 269–274.CrossRefGoogle Scholar
  24. Guil-Guerrero, J.L., Navarro-Juárez, R., López-Martı́nez, J.C., Campra-Madrid, P., Rebolloso-Fuentes, M.M. (2004). Functional properties of the biomass of three microalgal species. Journal of Food Engineering, 65(4), 511–517.CrossRefGoogle Scholar
  25. Halim, R., Danquah, M. K., & Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production: A review. Biotechnology Advances, 30(3), 709–732.CrossRefGoogle Scholar
  26. Hanotu, J., Bandulasena, H. C. H., & Zimmerman, W. B. (2012). Microflotation performance for algal separation. Biotechnology and Bioengineering, 109(7), 1663–1673.CrossRefGoogle Scholar
  27. ICIS. (n.d.). Retrieved July 13, 2017, from
  28. Joannes, C., Sipaut, C.S., Dayou, J., Yasir, S.M., Mansa, R.F. (2015). Review Paper on Cell Membrane Electroporation of Microalgae using Electric Field Treatment Method for Microalgae Lipid Extraction. IOP Conference Series: Materials Science and Engineering, 78, 12034. Scholar
  29. Kang, S., Kim, K. H., & Kim, Y. C. (2015). A novel electroporation system for efficient molecular delivery into Chlamydomonas reinhardtii with a 3-dimensional microelectrode. Scientific Reports, 5, 15835.CrossRefGoogle Scholar
  30. Kim, Y. H., Choi, Y. K., Park, J., Lee, S., Yang, Y. H., Kim, H. J., et al. (2012). Ionic liquid-mediated extraction of lipids from algal biomass. Bioresource Technology, 109, 312–315.CrossRefGoogle Scholar
  31. Lee, C. S., Robinson, J., & Chong, M. F. (2014). A review on application of flocculants in wastewater treatment. Process Safety and Environmental Protection, 92, 489–508.CrossRefGoogle Scholar
  32. Lee, J. Y., Yoo, C., Jun, S. Y., Ahn, C. Y., & Oh, H. M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 101(1), S75–S77.CrossRefGoogle Scholar
  33. Leesing, R., & Kookkhunthod, S. (2011). Heterotrophic Growth of Chlorella sp. KKU-S2 for Lipid Production using Molasses as a Carbon Substrate, 9, 87–91.Google Scholar
  34. Liang, Y., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31(7), 1043–1049.CrossRefGoogle Scholar
  35. Liu, J., Zhu, Y., Tao, Y., Zhang, Y., Li, A., Li, T., et al. (2013). Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnology for Biofuels, 6(1), 98.CrossRefGoogle Scholar
  36. Luangpipat, T., & Chisti, Y. (2016). Biomass and oil production by Chlorella vulgaris and four other microalgae - Effects of salinity and other factors. Journal of Biotechnology, 257, 47–57.CrossRefGoogle Scholar
  37. Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review. Bioresource Technology, 70(1), 1–15.CrossRefGoogle Scholar
  38. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.CrossRefGoogle Scholar
  39. Medina, A. R., Grima, E. M., Gimenez, A. G., & Gonzalez, M. J. I. (1998). Downstream processing of algal polyunsaturated fatty acids. Biotechnology Advances, 16(3), 517–580.CrossRefGoogle Scholar
  40. Milledge, J. J., & Heaven, S. (2013). A review of the harvesting of micro-algae for biofuel production. Reviews in Environmental Science and Biotechnology, 12(2), 165–178.CrossRefGoogle Scholar
  41. Mohn, F.H. (1980). Experiences and strategies in the recovery of biomass from mass cultures of microalgae. Algal Biomass, 471–547.Google Scholar
  42. Molina Grima, E., Belarbi, E. H., Acién Fernández, F. G., Robles Medina, A., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnology Advances, 20(7–8), 491–515.CrossRefGoogle Scholar
  43. Moncada, J., Hernández, V., Chacón, Y., Betancourt, R., & Cardona, C. A. (2015). Citrus Based Biorefineries. In D. Simmons (Ed.), Citrus Fruits. Production, Consumption and Health Benefits (pp. 1–26). Nova Publishers.Google Scholar
  44. Moncada, J., Matallana, L. G., & Cardona, C. A. (2013). Selection of Process Pathways for Biorefinery Design Using Optimization Tools: A Colombian Case for Conversion of Sugarcane Bagasse to Ethanol, Poly-3-hydroxybutyrate (PHB), and Energy. Industrial and Engineering Chemistry Research, 52(11), 4132–4145.CrossRefGoogle Scholar
  45. Mubarak, M., Shaija, A., & Suchithra, T. V. (2015). A review on the extraction of lipid from microalgae for biodiesel production. Algal Research, 7, 117–123.CrossRefGoogle Scholar
  46. Mussatto, S. I., Moncada, J., Roberto, I. C., & Cardona, C. A. (2013). Techno-economic analysis for brewer’s spent grains use on a biorefinery concept: The Brazilian case. Bioresource Technology, 148, 302–310.CrossRefGoogle Scholar
  47. Mussatto, S. I., Santos, J. C., Filho, W. C. R., & Silva, S. S. (2014). Purification of xylitol from fermented hemicellulosic hydrolyzate using liquid–liquid extraction and precipitation techniques. Applied Energy, 123, 108–120.CrossRefGoogle Scholar
  48. Perez-Garcia, O., Escalante, F.M.E., de-Bashan, L.E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45, 11–36.CrossRefGoogle Scholar
  49. Pragya, N., Pandey, K. K., & Sahoo, P. K. (2013). A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renewable and Sustainable Energy Reviews, 24, 159–171.CrossRefGoogle Scholar
  50. Prommuak, C., Pavasant, P., Quitain, A. T., Goto, M., & Shotipruk, A. (2012). Microalgal lipid extraction and evaluation of single-step biodiesel production. Engineering Journal, 16(5), 157–166.CrossRefGoogle Scholar
  51. Quintero, J. A., & Cardona, C. A. (2009). Ethanol dehydration by adsorption with starchy and cellulosic materials. Industrial and Engineering Chemistry Research, 48(14), 6783–6788.CrossRefGoogle Scholar
  52. Quintero, J. A., Felix, E. R., Rincón, L. E., Crisspín, M., Fernandez Baca, J., Khwaja, Y., et al. (2012). Social and techno-economical analysis of biodiesel production in Peru. Energy Policy, 43, 427–435.CrossRefGoogle Scholar
  53. Ranjith Kumar, R., Hanumantha Rao, P., & Arumugam, M. (2015). Lipid extraction methods from microalgae: A comprehensive review. Frontiers in Energy Research, 2, 1–9.CrossRefGoogle Scholar
  54. Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88(10), 3411–3424.CrossRefGoogle Scholar
  55. Richmond, A. (2004). Handbook of microalgal culture: biotechnology and applied phycology/edited by Amos Richmond. Orton. Catie. Ac. Cr, 472.
  56. Ruiz-Mercado, G. J., Smith, R. L., & Gonzalez, M. A. (2012). Sustainability indicator for chemical processes: I. taxonomy. Industrial & Engineering Chemistry Research, 51, 2309–2328.CrossRefGoogle Scholar
  57. Safi, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265–278.CrossRefGoogle Scholar
  58. Sforza, E., Bertucco, A., Morosinotto, T., & Giacometti, G. M. (2012). Photobioreactors for microalgal growth and oil production with Nannochloropsis salina: From lab-scale experiments to large-scale design. Chemical Engineering Research and Design, 90(9), 1151–1158.CrossRefGoogle Scholar
  59. Shahid, E. M., & Jamal, Y. (2011). Production of biodiesel: A technical review. Renewable and Sustainable Energy Reviews, 15(9), 4732–4745.CrossRefGoogle Scholar
  60. Sharma, K. K., Garg, S., Li, Y., Malekizadeh, A., & Schenk, P. M. (2013). Critical analysis of current microalgae dewatering techniques. Biofuels, 4, 397–407.CrossRefGoogle Scholar
  61. Show, K.Y., Lee, D.J. (2014). Chapter 5 - Algal Biomass Harvesting BT - Biofuels from Algae (pp. 85–110). Amsterdam: Elsevier. Scholar
  62. Sigma-Aldrich. (n.d.). Retrieved July 13, 2017, from
  63. Slegers, P. M., Lösing, M. B., Wijffels, R. H., van Straten, G., & van Boxtel, A. J. B. (2013). Scenario evaluation of open pond microalgae production. Algal Research, 2(4), 358–368.CrossRefGoogle Scholar
  64. Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96.CrossRefGoogle Scholar
  65. Taher, H., Al-Zuhair, S., Al-Marzouqi, A. H., Haik, Y., & Farid, M. (2014). Effective extraction of microalgae lipids from wet biomass for biodiesel production. Biomass and Bioenergy, 66, 159–167.CrossRefGoogle Scholar
  66. Toepfl, S., Mathys, A., Heinz, V., & Knorr, D. (2006). Review: Potential of High Hydrostatic Pressure and Pulsed Electric Fields for Energy Efficient and Environmentally Friendly Food Processing. Food Reviews International, 22(4), 405–423.CrossRefGoogle Scholar
  67. Trainor, F. R. (2009). Perspective: Breaking the habit. Integrating plasticity into taxonomy. Systematics and Biodiversity, 7(2), 95–100.CrossRefGoogle Scholar
  68. Uduman, N., Qi, Y., Danquah, M. K., Forde, G. M., & Hoadley, A. (2010). Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. Journal of Renewable and Sustainable Energy, 2, 1–15.CrossRefGoogle Scholar
  69. Venkataraman, L. V. (1997). Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnologym, edited by Avigad Vonshak. Journal of Applied Phycology, 9(3), 295–296.CrossRefGoogle Scholar
  70. Waldenstedt, L., Inborr, J., Hansson, I., & Elwinger, K. (2003). Effects of astaxanthin-rich algal meal (Haematococcus pluvalis) on growth performance, caecal campylobacter and clostridial counts and tissue astaxanthin concentration of broiler chickens. Animal Feed Science and Technology, 108(1), 119–132.CrossRefGoogle Scholar
  71. Wilson, M. (2012). Cross flow filtration for mixed-culture algae harvesting for municipal wastewater lagoons. Master of Science Thesis, Utah State University.Google Scholar
  72. Yang, C., Hua, Q., & Shimizu, K. (2000). Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochemical Engineering Journal, 6(2), 87–102.CrossRefGoogle Scholar
  73. Yoo, S. J., Kim, J. H., & Lee, J. M. (2014). Dynamic modelling of mixotrophic microalgal photobioreactor systems with time-varying yield coefficient for the lipid consumption. Bioresource Technology, 162, 228–235.CrossRefGoogle Scholar
  74. Young, D. M., & Cabezas, H. (1999). Designing sustaibanle processes with simulation: The waste reduction (WAR) algorithm. Engineering, Computers and Chemical, 23, 1477–1491.CrossRefGoogle Scholar
  75. Young, D., Scharp, R., & Cabezas, H. (2000). The waste reduction (WAR) algorithm: Environmental impacts, energy consumption, and engineering economics. Waste Management, 20(8), 605–615.CrossRefGoogle Scholar
  76. Yu, Z., Chen, X., & Xia, S. (2016). The mechanism of lipids extraction from wet microalgae Scenedesmus sp. by ionic liquid assisted subcritical water. Journal of Ocean University of China, 15(3), 549–552.CrossRefGoogle Scholar
  77. Zhang, Y., Li, B., Li, H., & Zhang, B. (2012). Exergy analysis of biomass utilization via steam gasification and partial oxidation. Thermochimica Acta, 538, 21–28.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Daissy Lorena Restrepo-Serna
    • 1
  • Mariana Ortiz-Sánchez
    • 1
  • Carlos Ariel Cardona-Alzate
    • 1
  1. 1.Chemical Engineering DepartmentNational University of ColombiaManizalesColombia

Personalised recommendations