Microalgae Biorefineries for Energy and Coproduct Production

  • Pierre-Louis Gorry
  • León Sánchez
  • Marcia Morales
Part of the Green Energy and Technology book series (GREEN)


The 2015 Conference of the Parties (COP21) marked a turning point for global actions to mitigate atmospheric greenhouse gases, reduce the carbon dioxide emissions from fossil fuel combustion, and stabilize the global climate. On the other hand, the increase in energy demand asks for renewable sources and robust systems to supply energy and obtain product diversity like that obtained from a petroleum refinery. A biorefinery is the sustainable processing of biomass into a spectrum of profitable products and energy. Microalgal biomass is considered one of the most promising biorefinery feedstock providing alternatives for different areas, such as food, feed, cosmetics and health industries, fertilizers, plastics, and biofuels including biodiesel, methane, hydrogen, ethanol. Furthermore, microalgae can also be used for the treatment of wastewater and CO2 capture. However, microalgal biofuels are not currently cost competitive at large scale and to develop a sustainable and economically feasible process, most of the biomass components should be valorized. High-value coproducts from microalgae include pigments, proteins, lipids, carbohydrates, vitamins, and antioxidants, and they can improve the process economics in the biorefinery concept. Therefore, mild and energy-efficient downstream processing techniques need to be chosen to maintain product properties and value. In this chapter, the existing products and microalgae biorefinery strategies will be presented, followed by new developments, sustainability assessments, and techno-economic evaluations. Finally, perspectives and challenges of microalgal biorefineries will be explored.


Biorefinery Downstream processing Biofuels Microalgae products LCA 



This work was supported by CONACYT (Mexican Council for Science and Technology) through project numbers 247402 and 247006.


  1. Abd El Baky, H. H., & El-Baroty, G. S. (2013). Healthy benefit of microalgal bioactive substances. Journal of Aquatic Science, 1(1), 11–22.Google Scholar
  2. Acién, F. G., Molina, E., Fernández-Sevilla, J. M., Barbosa, M., Gouveia, L., Sepúlveda C., et al. (2017). Economics of microalgae production. In R. Muñoz, C. González (Eds.), Microalgae-based biofuels and bioproducts (pp. 485–503). Amsterdam: Elsevier Ltd. ISBN: 9780081010235.CrossRefGoogle Scholar
  3. Adam, F., Abert-vian, M., Peltier, G., & Chemat, F. (2012). “‘Solvent-free’” ultrasound-assisted extraction of lipids from fresh microalgae cells: A green, clean and scalable process. Bioresource Technology, 114, 457–465.CrossRefGoogle Scholar
  4. Adarme-Vega, T., Lim, D. K. Y., Timmins, M., Vernen, F., Li, Y., & Schenk, P. M. (2012). Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Factories, 11(1), 96.CrossRefGoogle Scholar
  5. Ahmad, N., Pandit, N., & Maheshwari, S. (2012). l-asparaginase gene-a therapeutic approach towards drugs for cancer cell. International Journal of of Biosciences, 2(4), 1–11. Retrieved from
  6. Albarelli, J. Q., Santos, D. T., Ensinas, A. V., Marechal, F., Cocero, M. J., & Meireles, M. A. A. (2017). Product diversification in the sugarcane biorefinery through algae growth and supercritical CO2 extraction: Thermal and economic analysis. Renewable Energy, 1–10.Google Scholar
  7. Al-Sherif, E. A., Ab El-Hameed, M. S., Mahmoud, M. A., & Ahmed, H. S. (2015). Use of cyanobacteria and organic fertilizer mixture as soil bioremediation. American-Eurasian Journal of Agricultural and Environmental Science, 15, 794–799.Google Scholar
  8. Alzate, M. E., Muñoz, R., Rogalla, F., Fdz-Polanco, F., & Pérez-Elvira, S. I. (2012). Biochemical methane potential of microalgae: Influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresource Technology, 123, 488–494.CrossRefGoogle Scholar
  9. Amaro, H. M., Guedes, A. C., & Malcata, F. X. (2011). Advances and perspectives in using microalgae to produce biodiesel. Applied Energy, 88, 3402–3410.CrossRefGoogle Scholar
  10. Andiappan, V., Ko, A. S. Y., Lau, V. S. S., Ng, L. Y., Ng, R. T. L., Chemmangattuvalappil, N. G., et al. (2014). Synthesis of sustainable integrated biorefinery via reaction pathway synthesis: Economic, incremental enviromental burden and energy assessment with multiobjective optimization. AIChE Journal, 61(1), 132–146.CrossRefGoogle Scholar
  11. Ansari, F. A., Shriwastav, A., Gupta, S. K., Rawat, I., & Bux, F. (2017). Exploration of microalgae biorefinery by optimizing sequential extraction of major metabolites from Scenedesmus obliquus. Industrial and Engineering Chemistry Research, 56(12), 3407–3412.CrossRefGoogle Scholar
  12. Ansari, F. A., Shriwastav, A., Gupta, S. K., Rawat, I., Guldhe, A., & Bux, F. (2015). Lipid extracted algae as a source for protein and reduced sugar: A step closer to the biorefinery. Bioresource Technology, 179, 559–564.CrossRefGoogle Scholar
  13. Bahadar, A., & Bilal Khan, M. (2013). Progress in energy from microalgae: A review. Renewable and Sustainable Energy Reviews, 27, 128–148.CrossRefGoogle Scholar
  14. Balaji, S., Gopi, K., & Muthuvelan, B. (2013). A review on production of poly β hydroxybutyrates from cyanobacteria for the production of bio plastics. Algal Research, 2, 278–285.CrossRefGoogle Scholar
  15. Ballesteros-Gómez, A., Sicilia, M. D., & Rubio, S. (2010). Supramolecular solvents in the extraction of organic compounds. A review. Analytica Chimica Acta, 677(2), 108–130.CrossRefGoogle Scholar
  16. Barr, W. J., & Landis, A. E. (2017). Comparative life cycle assessment of a commercial algal multiproduct biorefinery and wild caught fishery for small pelagic fish. The International Journal of Life Cycle Assessment.Google Scholar
  17. Barros, A. I., Gonçalves, A. L., Simões, M., Pires, J. C. M., Gonçalves, A. L., Simões, M., et al. (2015). Harvesting techniques applied to microalgae: A review. Renewable and Sustainable Energy Reviews, 41, 1489–1500.CrossRefGoogle Scholar
  18. Bastiaens, L., Van Roy, S., Thomassen, G, & Elst, K. (2017). Biorefinery of algae: Technical and economic considerations. In R. Muñoz & C. González (Eds.), Microalgae-based biofuels and bioproducts (pp. 327–345). Amsterdam: Elsevier.CrossRefGoogle Scholar
  19. Baudelet, P. H., Ricochon, G., Linder, M., & Muniglia, M. (2017). A new insight into cell walls of Chlorophyta. Algal Research, 25, 333–371.CrossRefGoogle Scholar
  20. Becker, E. W. (2007). Microalgae as a source of protein. Biotechnol Advances, 25, 207–210.CrossRefGoogle Scholar
  21. Beheshtipour, H., Mortazavian, A. M., Mohammadi, R., Sohrabvandi, S., & Khosravi-Darani, K. (2013). Supplementation of Spirulina platensis and chlorella vulgaris algae into probiotic fermented milks. Comprehensive Reviews in Food Science and Food Safety, 12(2), 144–154.CrossRefGoogle Scholar
  22. Béligon, V., Christophe, G., Fontanille, P., & Larroche, C. (2016). Microbial lipids as potential source to food supplements. Current Opinion in Food Science, 7, 35–42.CrossRefGoogle Scholar
  23. Bermejo, R., Felipe, M., Talavera, E. M., & Alvarez-Pez, J. M. (2006). Expanded bed adsorption chromatography for recovery of phycocyanins from the Microalga Spirulina platensis. Chromatographia, 63(1–2), 59–66.CrossRefGoogle Scholar
  24. Bocchiaro, P., & Zamperini, A. (2016). World’s Largest Science, Technology & Medicine Open Access Book Publisher c. RFID Technol. Secur. Vulnerabilities, Countermeas.Google Scholar
  25. Borowitzka, M. (1995). Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology, 7(1), 3–15.CrossRefGoogle Scholar
  26. Borowitzka, M. A. (2013). High-value products from microalgae-their development and commercialisation. Journal of Applied Phycology, 25(3), 743–756.CrossRefGoogle Scholar
  27. Boussetta, N., Lesaint, O., & Vorobiev, E. (2013). A study of mechanisms involved during the extraction of polyphenols from grape seeds by pulsed electrical discharges. Innovative Food Science and Emerging Technologies, 19, 124–132.CrossRefGoogle Scholar
  28. Boyd, A. R., Champagne, P., McGinn, P. J., MacDougall, K. M., Melanson, J. E., & Jessop, P. G. (2012). Switchable hydrophilicity solvents for lipid extraction from microalgae for biofuel production. Bioresource Technology, 118, 628–632.CrossRefGoogle Scholar
  29. Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—The US Department of Energy’s “Top 10” revisited. Green Chemistry, 12(4), 539–554.CrossRefGoogle Scholar
  30. Brar, S. K., Sarma, S. J., & Pakshirajan K. (2016). Platform chemical biorefinery. Future green chemistry (pp. 438–450). The Netherlands: Elsevier. ISBN978-12-802980-0.Google Scholar
  31. Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577.CrossRefGoogle Scholar
  32. Broeren, M., Kempener, R., Simbolotti, G., & Tosato, G. (2013). Production of bio-methanol-technology brief. Technology Brief, 108(January), 1–24. Retrieved from September 2017.
  33. Brownbridge, G., Azadi, P., Smallbone, A., Bhave, A., Taylor, B., & Kraft, M. (2014). The future viability of algae-derived biodiesel under economic and technical uncertainties. Bioresource Technology, 151, 166–173.CrossRefGoogle Scholar
  34. Brunet, R., Boer, D., Guillén-Gosálbez, G., & Jiménez, L. (2015). Reducing the cost, environmental impact and energy consumption of biofuel processes through heat integration. Chemical Engineering Research and Design, 93, 203–212.CrossRefGoogle Scholar
  35. Budzianowski, W. M. (2017). High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries. Renewable and Sustainable Energy Reviews, 70, 793–804.CrossRefGoogle Scholar
  36. Buitrón, G., Carrillo-Reyes, J., Morales, M., Faraloni, C., & Torzillo, G. (2017). Biohydrogen production from microalgae. In R. Muñoz & C. González (Eds.), Microalgae-based biofuels and bioproducts (pp. 210–234). Amsterdam: Elsevier. ISBN 9780081010235.CrossRefGoogle Scholar
  37. Campenni, L., Nobre, B. P., Santos, C. A., Oliveira, A. C., Aires-Barros, M. R., Palavra, A. M. F., et al. (2013). Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Applied Microbiology Biotechnology, 97, 1383–1393.CrossRefGoogle Scholar
  38. Chailleux, E., Audo, M., Bujoli, B., Quefflec, C., Lagrand, J., & Lepine, O. (2012). Alternative binder from microalgae algoroute project. Alternative Binders for Sustainable Asphalt Pavements, 23–36.Google Scholar
  39. Chaogang, W., Zhangli, H., Anping, L., & Baohui, J. (2010). Biosynthesis of poly-3-hydroxybuturate (PHB) in the transgenic green alga Chlamydomonas reinhardtii. Journal of Phycology, 46, 396–402.CrossRefGoogle Scholar
  40. Chatterjee, A., Singh, S., Agrawal, C., Yadav, S., Rai, R., & Rai, L. C. (2017). Role of algae as a biofertilizer. In R. Prasad Rastogi, D. Madamwar, & A. Pandey (Eds.), Algae green chemistry. Recent progress in biotechnology (pp. 189–200). Amsterdam: Elsevier.CrossRefGoogle Scholar
  41. Chemat, F., Vian, M. A., & Cravotto, G. (2012). Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences, 13, 8615–8627.CrossRefGoogle Scholar
  42. Chen, W. H., Lin, B. J, Huang, M.-Y., & Chang, J. S. (2015). Thermochemical conversion of microalgal biomass into biofuels: A review. Bioresource Technology, 184, 314–327, ISSN 0960-8524.CrossRefGoogle Scholar
  43. Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., et al. (2017). Microalgae biorefinery: High value products perspectives. Bioresource Technology, 229, 53–62.CrossRefGoogle Scholar
  44. Chiaramonti, D., Prussi, M., Buffi, M., Casini, D., & Rizzo, A. M. (2015). Thermochemical conversion of microalgae: Challenges and opportunities. Energy Procedia, 75, 819–826.CrossRefGoogle Scholar
  45. Chilton, V., Mantrand, N., & Morel, B. (2016). Patent landscape report: Microalgae-related technologies. Patent Landscape Report. Retrieved from
  46. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.CrossRefGoogle Scholar
  47. Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26(3), 126–131.CrossRefGoogle Scholar
  48. Chng, L. M., Chan, D. J. C., & Lee, K. T. (2015). Sustainable production of bioethanol using lipid-extracted biomass from Scenedesmus dimorphus. Journal of Cleaner Production, 130, 68–73.CrossRefGoogle Scholar
  49. Chua, E. T., Schenk, P. M. (2017). A biorefinery for Nannochloropsis: Induction, harvesting, and extraction of EPA-rich oil and high-value protein. Bioresource Technology, 244(2), 1416–1424.CrossRefGoogle Scholar
  50. Collet, P., Hélias, A., Lardon, L., Ras, M., Goy, R. A., & Steyer, J. P. (2011). Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology, 102(1), 207–214.CrossRefGoogle Scholar
  51. Collet, P., Hélias, A., Lardon, L., Steyer, J. P., & Bernard, O. (2015). Recommendations for Life Cycle Assessment of algal fuels. Applied Energy, 154, 1089–1102.CrossRefGoogle Scholar
  52. Cuellar-Bermudez, S. P., Garcia-Perez, J. S., Rittmann, B. E., & Parra-Saldivar, R. (2015). Photosynthetic bioenergy utilizing CO2: An approach on flue gases utilization for third generation biofuels. Journal of Cleaner Production, 98, 53–65.CrossRefGoogle Scholar
  53. Dahms, H. U., Xu, Y., & Pfeiffer, C. (2006). Antifouling potential of cyanobacteria: a mini-review. Biofouling, 22, 317–327.CrossRefGoogle Scholar
  54. Das, P., Mandal, S. C., Bhagabati, S. K., Akhtar, M. S., & Singh, S. K. (2012). Important live food organisms and their role in aquaculture. In K. Sundaray, M. Sukham, R. K. Mohanty, & S. K. Otta (Eds.), Frontiers in aquaculture (1st ed., pp. 69–86). New Delhi: Narendra Publishing House.Google Scholar
  55. Davis, R., Jennifer, M., Kinchin, C., Grundl, N., Tan, E. C. D., & Humbird, D. (2016). Process design and economics for the production of algal biomass: Algal biomass production in open pond systems and processing through dewatering for downstream conversion. Technical Report NREL/TP-5100-64772. Retrieved from September 2017.
  56. de Boer K., & Bahri P. A. (2015). Economic and energy analysis of large-scale microalgae production for biofuels. In N. Moheimani, M. McHenry, K. de Boer, & P. A. Bahri (Eds.), Biomass and biofuels from microalgae. Biofuel and biorefinery technologies (Vol. 2, pp. 347–365). Cham: Springer. ISBN: SBN 978-94-007-5479-9.Google Scholar
  57. de Jong E., Higson A., Walsh P., & Wellisch M. (2012). IEA bioenergy—Task 42 biorefinery: Biobases chemicals-value added products from biorefineries. Consult done in August 2017.
  58. Delrue, F., Álvarez-Díaz, P. D., Fon-Sing, S., Fleury, G., & Sassi, J. F. (2016). The environmental biorefinery: Using microalgae to remediate wastewater, a win-win paradigm. Energies, 9(3), 1–19.CrossRefGoogle Scholar
  59. Demibras, A. (2009). Biorefineries: Current activities and future developments. Energy Conversion and Management, 50, 2782–2801.CrossRefGoogle Scholar
  60. Demmer, W., Fischer-Fruehholz, S., Kocourek, A., Nusbaumer, D., & Wuenn, E. (2005, April 28). Adsorption membrane comprising microporous polymer membrane with adsorbent particles embedded in the pores, useful in analysis, for purification or concentration. Google Patents. Retrieved from
  61. Deniz, I., García-Vaquero, M., & Imamoglu, E. (2017). Trends in red biotechnology: Microalgae for pharmaceutical applications. In R. Muñoz & C. González (Eds.), Microalgae-based biofuels and bioproducts (pp. 420–440). Amsterdam: Elsevier. ISBN: 9780081010235.CrossRefGoogle Scholar
  62. Dexler, I. L. C., & Yeh, D. H. (2014). Membrane applications for microalgae cultivation and harvesting: A review. Reviews inEnvironmental Science and Bio/technology, 13, 487–504.CrossRefGoogle Scholar
  63. Dibenedetto, A., Colucci, A., & Aresta, M. (2016). The need to implement an efficient biomass fractionation and full utilization based on the concept of “biorefinery” for a viable economic utilization of microalgae. Environmental Science and Pollution Research, 23(22), 22274–22283.CrossRefGoogle Scholar
  64. Dierkes, H., Steinhagen, V., Bork, M., Lütge, C., & Knez, Z. (2012). Cell lysis of plant or animal starting materials by a combination of a spray method and decompression for the selective extraction and separation of valuable intracellular materials. Patent no. EP 2315825 A1. Retrieved from
  65. Dong, T., Knoshaug, E. P., Davis, R., Laurens, L. M. L., Van Wychen, S., Pienkos, P. T., et al. (2016). Combined algal processing: A novel integrated biorefinery process to produce algal biofuels and bioproducts. Algal Research, 19, 316–323.CrossRefGoogle Scholar
  66. Douskova, I., Doucha, J., Livansky, K., MacHat, J., Novak, P., Umysova, D., et al. (2009). Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Applied Microbiology and Biotechnology, 82, 179–185.CrossRefGoogle Scholar
  67. Du, Y., Schuur, B., Kersten, S. R. A., & Brilman, D. W. F. (2015). Opportunities for switchable solvents for lipid extraction from wet algal biomass: An energy evaluation. Algal Research, 11, 271–283.CrossRefGoogle Scholar
  68. Ehimen, E. A., Sun, Z. F., Carrington, C. G., Birch, E. J., & Eaton-Rye, J. J. (2011). Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Applied Energy, 88, 3454–3463.CrossRefGoogle Scholar
  69. Eldalatony, M. M., Kabra, A. N., Hwang, J. H., Govindwar, S. P., Kim, K. H., Kim, H., et al. (2016). Pretreatment of microalgal biomass for enhanced recovery/extraction of reducing sugars and proteins. Bioprocess and Biosystems Engineering, 39(1), 95–103.CrossRefGoogle Scholar
  70. Eppink, M. H. M., Olivieri G., Reith, H., van den Berg, C., Barbosa M. J., Wijffels, R. H. (2017). From current algae products to future biorefinery practices: A review. In Advances in biochemical engineering/biotechnology. Berlin, Heidelberg: Springer.Google Scholar
  71. Espino, M., de los Angeles Fernandez, M., Gomez, F. J. V, & Silva, M. F. (2016). Natural designer solvents for greening analytical chemistry. TrAC—Trends in Analytical Chemistry, 76, 126–136.CrossRefGoogle Scholar
  72. Faheed, F. A., & Abd-El Fattah Z. (2008). Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. Journal of Agriculture and Social Sciences, 4, 165–169. Retrieved from
  73. Fernandez-Linares, L. C., González-Falfán, K. A., & Ramirz-López, C. (2017). Microalgal biomass: A biorefinery approach. In J. S. Tumuluru (Ed.), Biomass volume estimation and valorization for energy microalgal biomass—A biorefinery approach (pp. 1–23). InTech. ISBN 978-953-51-2938-7.Google Scholar
  74. Francavilla, M., Kamaterou, P., Intini, S., Monteleone, M., & Zabaniotou, A. (2015). Cascading microalgae biorefinery: Fast pyrolysis of Dunaliella tertiolecta lipid extracted-residue. Algal Research, 11, 184–193.CrossRefGoogle Scholar
  75. Garcia-Gonzalez, J., & Sommerfeld, M. (2016). Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. Journal of Applied Phycology, 28, 1051–1061.CrossRefGoogle Scholar
  76. García-Prieto, C. V. G., Ramos, F. D., Estrada, V., & Díaz, M. S. (2014). Optimal design of an integrated microalgae biorefinery for the production of biodiesel and PHBS. Chemical Engineering Transactions, 37, 319–324.Google Scholar
  77. Gentili, F. G. (2014). Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases. Bioresource Technology, 169, 27–32.CrossRefGoogle Scholar
  78. Gerardo, M. L., Oatley-Radcliffe, D. L., & Lovitt, R. W. (2014). Integration of membrane technology in microalgae biorefineries. Journal of Membrane Science, 464, 86–99.CrossRefGoogle Scholar
  79. Gerardo, M. L., Van Den Hende, S., Vervaeren, H., Coward, T., & Skill, S. C. (2015). Harvesting of microalgae within a biorefinery approach: A review of the developments and case studies from pilot-plants. Algal Research, 11, 248–262.CrossRefGoogle Scholar
  80. Gilbert-López, B., Mendiola, J. A., Fontecha, J., van den Broek, L. A. M., Sijtsma, L., Cifuentes, A., et al. (2015). Downstream processing of Isochrysis galbana: A step towards microalgal biorefinery. Green Chemistry, 17(9), 4599–4609.CrossRefGoogle Scholar
  81. Gnansounou, E., Raman, J.K. (2017). Life cycle assessment of algal biorefinery. In E. Gnansounou & A. Pandey (Eds.), Life-cycle assessment of biorefineries (pp. 199–219). Amsterdam: Elsevier. ISBN: 978-0-444-63585-3.CrossRefGoogle Scholar
  82. Godlewska, K., Michalak, I., Tuhy, L., & Chojnacka, K. (2016). Plant growth biostimulants based on different methods of seaweed extraction with water. BioMed Research International, 2016.Google Scholar
  83. Golueke, C. G., Oswald, W. J., & Gotaas, H. B. (1957). Anaerobic Digestion of Algae. Applied Microbiology, 5(1), 47–55.Google Scholar
  84. Gong, M., Hu, Y., Yedahalli, Sh, & Bassi, A. (2017). Oil extraction processes in microalgae. Recent Advances in Renewable Energy, 1, 377–411.Google Scholar
  85. González-Delgado, Á.-D., & Kafarov, V. (2011). Microalgae based biorefinery: Issues to consider. CT&F - Ciencia, Tecnología y Futuro, 4(4), 5–22.Google Scholar
  86. Gorry, P. L., Morales, M., Gorry, Ph. (2017). Science and technology indicators of microalgae-based biofuel research. Proceedings of ISSI 2017 Wuhan: 16th International Society of Scientometrics and Informetrics Conference. Retrieved from
  87. Gouveia, L., Batista, A. P., Sousa, I., Raymundo, A., & Bandarra, N. M. (2008). Microalgae in novel food product. In K. Papadoupoulos (Ed.), Food chemistry research developments (pp. 75–112). Nova Science Publishers. ISBN 978-1-60456-262-0.Google Scholar
  88. Gouveia, L., Graça, S., Sousa, C., Ambrosano, L., Ribeiro, B., Botrel, E. P., et al. (2016). Microalgae biomass production using wastewater: Treatment and costs. Scale-up considerations. Algal Research, 16, 167–176.CrossRefGoogle Scholar
  89. Gouveia, L., Neves, C., Sebastião, D., Nobre, B. P., & Matos, C. T. (2014). Effect of light on the production of bioelectricity and added-value microalgae biomass in a photosynthetic alga microbial fuel cell. Bioresource Technology, 154, 171–177.CrossRefGoogle Scholar
  90. Grosso, C., Valentão, P., Ferreres, F., & Andrade, P. B. (2015). Alternative and efficient extraction methods for marine-derived compounds. Marine Drugs, 13(5), 3182–3230.CrossRefGoogle Scholar
  91. Gultom, S. O., Zamalloa, C., & Hu, B. (2014). Microalgae harvest through fungal pelletization—Co-culture of Chlorella vulgaris and Aspergillus niger. Energies, 7, 4417–4429.CrossRefGoogle Scholar
  92. Günerken, E., D’Hondt, E., Eppink, M. H. M., Garcia-Gonzalez, L., Elst, K., & Wijffels, R. H. (2015). Cell disruption for microalgae biorefineries. Biotechnology Advances, 33(2), 243–260.CrossRefGoogle Scholar
  93. Gutiérrez-Arriaga, C. G., Serna-González, M., Ponce-Ortega, J. M., & El-Halwagi, M. M. (2014). Sustainable integration of algal biodiesel production with steam electric power plants for greenhouse gas mitigation. ACS Sustainable Chemistry & Engineering, 2(6), 1388–1403.CrossRefGoogle Scholar
  94. Haase, S. M., Huchzermeyer, B., & Rath, T. (2011). PHB accumulation in Nostoc muscorum under different carbon stress situations. Journal of Applied Phycology, 24, 157–162.CrossRefGoogle Scholar
  95. Halim, R., Danquah, M. K., & Webley, P. A. (2012a). Extraction of oil from microalgae for biodiesel production: A review. Biotechnology Advances, 30(3), 709–732.CrossRefGoogle Scholar
  96. Halim, R., Harun, R., Danquah, M. K., & Webley, P. A. (2012b). Microalgal cell disruption for biofuel development. Applied Energy, 91, 116–121.CrossRefGoogle Scholar
  97. Halim, R., Hosikian, A., Lim, S., & Danquah, M. K. (2010). Chlorophyll extraction from microalgae: A review on the process engineering aspects. International Journal of Chemical Engineering, 2010.Google Scholar
  98. Halim, H., Webley, P. A., & Martin, G. J. O. (2016). The CIDES process: Fractionation of concentrated microalgal paste for co-production of biofuel, nutraceuticals, and high-grade protein feed. Algal Research, 19, 299–306.CrossRefGoogle Scholar
  99. Hamed, I. (2016). The evolution and versatility of microalgal biotechnology: A review. Comprehensive Reviews in Food Science and Food Safety, 15, 1104–1123.CrossRefGoogle Scholar
  100. Hannon, M., Gimpel, J., Tran, M., Rasala, B., & Mayfield, S. (2010). Biofuels from algae: Challenges and potential. Biofuels, 1(5), 763–784.CrossRefGoogle Scholar
  101. Hariskos, I., & Posten, C. (2014). Biorefinery of microalgae—Opportunities and constraints for different production scenarios. Biotechnology Journal, 9, 739–752.CrossRefGoogle Scholar
  102. Harun, R., & Danquah, M. K. (2011). Influence of acid pre-treatment on microalgal biomass for ethanol production. Process Biochemistry, 46, 304–309.CrossRefGoogle Scholar
  103. Harun, R., Davidson, M., Doyle, M., Gopiraj, R., Danquah, M., & Forde, G. (2011). Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass and Bioenergy, 35(1), 741–747.CrossRefGoogle Scholar
  104. Harun, R., Yip, J. W. S., Thiruvenkadam, S., Ghani, W. A. W. A. K., Cherrington, T., & Danquah, M. K. (2014). Algal biomass conversion to bioethanol—A step-by-step assessment. Biotechnology Journal, 9, 73–86.CrossRefGoogle Scholar
  105. Hemaiswarya, S., Raja, R., Kumar, R. R., Ganesan, V., & Anbazhagan, C. (2011). Microalgae: A sustainable feed source for aquaculture. World Journal of Microbiology & Biotechnology, 27(8), 1737–1746.CrossRefGoogle Scholar
  106. Hernández, D., Solana, M., Riaño, B., García-gonzález, M. C., & Bertucco, A. (2014). Biofuels from microalgae: Lipid extraction and methane production from the residual biomass in a biorefinery approach. Bioresource Technology, 170, 370–378.CrossRefGoogle Scholar
  107. Ho, Sh-H, Huang, Sh-W, Chen, Ch-Y, Hasunuma, T., Kondo, A., & Chang, J-Sh. (2013). Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresource Technology, 135, 191–198.CrossRefGoogle Scholar
  108. Hoffman, J., Pate, R. C., Drennen, T., & Quinn, J. C. (2017). Techno-economic assessment of open microalgae production systems. Algal Research, 23, 51–57.CrossRefGoogle Scholar
  109. Horváth, I. T. (1998). Fluorous biphase chemistry. Accounts of Chemical Research, 31(10), 641–650.CrossRefGoogle Scholar
  110. Hossain, G. S., Liu, L., & Du, G. C. (2017). Industrial bioprocesses and the biorefinery concept. In C. Larroche, M. Ángeles Sanromán, G. Du, A. Pandey (Eds.), Current developments in biotechnology and bioengineering. bioprocesses, bioreactors and controls (pp. 3–27). Amsterdam: Elsevier.CrossRefGoogle Scholar
  111. Ibañez, E., Herrero, M., Mendiola, J. A., & Castro-Puyana, M. (2012). Extraction and characterization of bioactive compounds with health benefits from marine resources: Macro and micro algae, cyanobacteria, and invertebrates. In M. Hayes (Ed.), marine bioactive compounds: Sources, characterization and applications (pp. 55–98). Boston, MA: Springer.CrossRefGoogle Scholar
  112. IEA. (2017). State of technology review—Algae bioenergy an IEA Bioenergy inter-task strategic project. Report coordinated by Lieve M.L. Laurens, National Renewable Energy Laboratory, Published by IEA Bioenergy: Task 39: January 2017.Google Scholar
  113. Jacob-Lopes, E., & Franco, T. T. (2013). From oil refinery to microalgal biorefinery. Journal of CO2 Utilization, 2, 1–7.CrossRefGoogle Scholar
  114. Jahan, A., Ahmad, I. Z., Fatima, N., Ansari, V. A., & Akhtar, J. (2017). Algal bioactive compounds in the cosmeceutical industry: A review. Phycologia, 56(4), 410–422.CrossRefGoogle Scholar
  115. Jankowska, E., Sahu, A. K., & Oleskowicz-Popiel, P. (2017). Biogas from microalgae: Review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renewable and Sustainable Energy Reviews, 75, 692–709.CrossRefGoogle Scholar
  116. Japar, A. S., Takriff, M. S., & Yasin, N. H. M. (2017). Harvesting microalgal biomass and lipid extraction for potential biofuel production: A review. Journal of Environmental Chemical Engineering, 5(1), 555–563.CrossRefGoogle Scholar
  117. Jeevan Kumar, S. P., Vijay Kumar, G., Dash, A., Scholz, P., & Banerjee, R. (2017). Sustainable green solvents and techniques for lipid extraction from microalgae: A review. Algal Research, 21, 138–147.CrossRefGoogle Scholar
  118. Jeong, K. M., Lee, M. S., Nam, M. W., Zhao, J., Jin, Y., Lee, D. K., et al. (2015). Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media. Journal of Chromatography A, 1424, 10–17.CrossRefGoogle Scholar
  119. Jessop, P. G., Mercer, S. M., & Heldebrant, D. J. (2012). CO2-triggered switchable solvents, surfactants, and other materials. Energy & Environmental Science, 5(6), 7240.CrossRefGoogle Scholar
  120. Kadam, S. U., Tiwari, B. K., & O’Donnell, C. P. (2013). Application of novel extraction technologies for bioactives from marine algae. Journal of Agricultural and Food Chemistry, 61(20), 4667–4675.CrossRefGoogle Scholar
  121. Kapdan, I. K., & Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 38(5), 569–582.CrossRefGoogle Scholar
  122. Kassim, M. A., & Meng, T. K. (2017). Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Science of the Total Environment, 584–585, 1121–1129.CrossRefGoogle Scholar
  123. Keegan, D., Kretschmer, B., Elbersen, B., & Panoutsou, C. (2013). Cascading use: A systematic approach to biomass beyond the energy sector. Biofuels, Byproducts and Biorefining, 7, 193–206.CrossRefGoogle Scholar
  124. Kim, D. Y., Vijayan, D., Praveenkumar, R., Han, J. I., Lee, K., Park, J. Y., et al. (2016). Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresource Technology, 199, 300–310.CrossRefGoogle Scholar
  125. Kipngetich, T. E., & Hillary, M. (2013). A blend of green algae and sweet potato starch as a potential source of bioplastic production and its significance to the polymer industry. International Journal of Emerging Technology and Advanced Engineering, 2, 15–19.Google Scholar
  126. Konur, O. (2011). The scientometric evaluation of the research on the algae and bio-energy. Applied Energy, 88(10), 3532–3540.CrossRefGoogle Scholar
  127. Kouhia, M., Holmberg, H., & Ahtila, P. (2015). Microalgae-utilizing biorefinery concept for pulp and paper industry: Converting secondary streams into value-added products. Algal Research, 10, 41–47.CrossRefGoogle Scholar
  128. Kumar, G., Zhen, G., Kobayashi, T., Sivagurunathan, P., Kim, S. H., & Xu, K. Q. (2016). Impact of pH control and heat pre-treatment of seed inoculum in dark H2 fermentation: A feasibility report using mixed microalgae biomass as feedstock. International J. Journal of Hydrogen Energy, 41, 4382–4392.CrossRefGoogle Scholar
  129. Laurens, L. M. L., Chen-Glasser, M., & McMillan, J. D. (2017a). A perspective on renewable bioenergy from photosynthetic algae as feedstock for biofuels and bioproducts. Algal Research, 24, 261–264.CrossRefGoogle Scholar
  130. Laurens, L. M. L., Markham, J., Templeton, D. W., Christensen, E. D., Van Wychen, S., Vadelius, E. W., et al. (2017b). Development of algae biorefinery concepts for biofuels and bioproducts; A perspective on process-compatible products and their impact on cost-reduction. Energy & Environmental Science, 10(8), 1716–1738.CrossRefGoogle Scholar
  131. Lee, D., Chang, J Sh, & Lai, J. Y. (2015). Microalgae–microbial fuel cell: A mini review. Bioresource Technology, 198, 891–895.CrossRefGoogle Scholar
  132. Lee, A. K., Lewis, D. M., & Ashman, P. J. (2012). Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass and Bioenergy, 46, 89–101.CrossRefGoogle Scholar
  133. Lemões, J. S., Rui C. M. Sobrinho, A., Farias, S. P., de Moura, R. R., Primel, E. G., et al. (2016). Sustainable production of biodiesel from microalgae by direct transesterification. Sustainable Chemistry and Pharmacy, 3, 33–38.CrossRefGoogle Scholar
  134. Liang, Y., Kashdan, T., Sterner, C., Dombrowski, L, Petrick, I., Kröger, M., et al. (2015). Algal biorefineries. In A. Pandey, R. Höfer, M. Taherzadeh, M. Nampoothiri, & C. Caroche (Eds.), Industrial biorefineries and white biotechnology (pp. 36–90). Amsterdam: Elsevier. ISBN: 978-0-444-63453-5.CrossRefGoogle Scholar
  135. Lorente, E., Hapońska, M., Clavero, E., Torras, C., & Salvadó, J. (2017). Microalgae fractionation using steam explosion, dynamic and tangential cross-flow membrane filtration. Bioresource Technology, 37, 3–10.CrossRefGoogle Scholar
  136. Lorenz, R. T., & Cysewski, G. R. (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 18, 160–167.CrossRefGoogle Scholar
  137. Mallick, N., Bagchi, S. K., Koley, S., & Singh, A. K. (2016). Progress and challenges in microalgal biodiesel production. Frontiers in Microbiology, 7(1019), 1–11.Google Scholar
  138. Marcati, A., Ursu, A. V., Laroche, C., Soanen, N., Marchal, L., Jubeau, S., et al. (2014). Extraction and fractionation of polysaccharides and B-phycoerythrin from the microalga Porphyridium cruentum by membrane technology. Algal Research, 5(1), 258–263.CrossRefGoogle Scholar
  139. Marrone, B. L., Lacey, R. E., Anderson, D. B., Bonner, J., Coons, J., Dale, T., et al. (2017). Review of the harvesting and extraction program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Research (in press).Google Scholar
  140. Martinez-Hernandez, E., Campbell, G., & Sadhukhan, J. (2013). Economic value and environmental impact (EVEI) analysis of biorefinery systems. Chemical Engineering Research and Design, 91(8), 1418–1426.CrossRefGoogle Scholar
  141. Martins, R. F., Ramos, M. F., Herfindal, L., Sousa, J. A., Skærven, K., & Vasconcelos, V. M. (2008). Antimicrobial and cytotoxic assessment of marine Cyanobacteria—Synechocystis and Synechococcus. Marine Drugs, 6(1), 1–11.CrossRefGoogle Scholar
  142. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14, 217–232.CrossRefGoogle Scholar
  143. Maurya, R., Paliwal, Ch., Ghosh, T., Pancha, I., Chokshi, K., Mitra, M., et al. (2016). Applications of de-oiled microalgal biomass towards development of sustainable biorefinery. Bioresource Technology, 214, 787–796.CrossRefGoogle Scholar
  144. Menetrez, M. Y. (2012). An overview of algae biofuel production and potential environmental impact. Environmental Science Technology, 46(13), 7073–7085.CrossRefGoogle Scholar
  145. Michalak, I., & Chojnacka, K. (2014). Algal extracts: Technology and advances. Engineering in Life Sciences, 14(6), 1618–2863.CrossRefGoogle Scholar
  146. Milledge, J. J. (2011). Commercial application of microalgae other than as biofuels: A brief review. Reviews in Environmental Science & Biotechnology, 10(1), 31–41.CrossRefGoogle Scholar
  147. Mimouni, V., Ulmann, L., Pasquet, V., Mathieu, M., Picot, L., Bougaran, G., et al. (2012). The potential of microalgae for the production of bioactive molecules of pharmaceutical interest. Current Pharmaceutical Biotechnology, 13(5), 2733–2750.CrossRefGoogle Scholar
  148. Mohan, S. V., Modestra, J. A., Amulya, K., Butti, S. K., & Velvizhi, G. (2016a). A circular bioeconomy with biobased products from CO2 sequestration. Trends in Biotechnology, 34(6), 506–519.CrossRefGoogle Scholar
  149. Mohan, S. V., Nikhil, G. N., Chiranjeevi, P., Nagendranatha-Reddy, Rohit, M. V., Naresh Kumar, A., et al. (2016a). Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresource Technology, 215, 2–12.CrossRefGoogle Scholar
  150. Moncada, J., Tamayo, J. A., & Cardona, C. A. (2014). Integrating first, second, and third generation biorefineries: Incorporating microalgae into the sugarcane biorefinery. Chemical Engineering Science, 118, 126–140.CrossRefGoogle Scholar
  151. Mondal, M., Goswami, S., Ghosh, A., Oinam, G., Tiwari, O. N., Das, P., et al. (2017). Production of biodiesel from microalgae through biological carbon capture: A review. Biotechnology, 7(99), 1–21.Google Scholar
  152. Mulchandani, K., Kar, J. R., & Singhal, R. S. (2015). Extraction of lipids from Chlorella saccharophila using high-pressure homogenization followed by three phase partitioning. Applied Biochemistry and Biotechnology, 176(6), 1613–1626.CrossRefGoogle Scholar
  153. Mussgnug, J. H., Klassen, V., Schlüter, A., & Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150, 51–56.CrossRefGoogle Scholar
  154. Nayak, B. K., Roy, S., & Das, D. (2014). Biohydrogen production from algal biomass (Anabaena sp. PCC 7120) cultivated in airlift photobioreactor. International Journal of Hydrogen Energy, 39, 7553–7560.CrossRefGoogle Scholar
  155. Ngamprasertsith, S., & Sawangkeaw, R. (2011). Transesterification in supercritical conditions. RFID Technology, Security Vulnerabilities, and Countermeasures, 75–100.Google Scholar
  156. Nguyen, T. A. D., Kim, K. R., Nguyen, M. T., Kim, M. S., Kim, D., & Sim, S. J. (2010). Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods. International Journal of Hydrogen Energy, 35, 13035–13040.CrossRefGoogle Scholar
  157. Nobre, B. P., Villalobos, F., Barragán, B. E., Oliveira, A. C., Batista, A. P., Marques, P. A. S. S., et al. (2013). A biorefinery from Nannochloropsis sp. microalga—Extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresource Technology, 135, 128–136.CrossRefGoogle Scholar
  158. Norsker, N. H., Barbosa, M. J., Vermue, M. H., & Wijffels, R. H. (2011). Microalgal production—A close look at the economics. Biotechnology Advances, 29(1), 24–27.CrossRefGoogle Scholar
  159. Nurra, C., Torras, C., Clavero, E., Ríos, S., Rey, M., Lorente, E., et al. (2014). Biorefinery concept in a microalgae pilot plant. Culturing, dynamic filtration and steam explosion fractionation. Bioresource Technology, 163, 136–142.CrossRefGoogle Scholar
  160. Olguin, E. (2012). Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnology Advances, 30(3), 1031–1046. Scholar
  161. Orosz, M. S., & Forney, D. (2008). A comparison of algae to biofuel conversion pathways for energy storage off-grid. Retrieved from internet September 2016.
  162. Otsuki, T., & Zhang, F. (2004). Synthesis and tensile properties of a novel composite of Chlorella and polyethylene. Journal of Applied Polymer Science, 92, 812–816.CrossRefGoogle Scholar
  163. Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R. L., & Duarte, A. R. C. (2014). Natural deep eutectic solvents—Solvents for the 21st century. ACS Sustainable Chemistry and Engineering, 2(5), 1063–1071.CrossRefGoogle Scholar
  164. Park, J. Y., Park, M. S., Lee, Y. C., & Yang, J. W. (2015). Advances in direct transesterification of algal oils from wet biomass. Bioresource Technology, 184, 267–275.CrossRefGoogle Scholar
  165. Parniakov, O., Barba, F. J., Grimi, N., Marchal, L., Jubeau, S., Lebovka, N., et al. (2015). Pulsed electric field and pH assisted selective extraction of intracellular components from microalgae Nannochloropsis. Algal Research, 8, 128–134.CrossRefGoogle Scholar
  166. Pasquet, V., Farhat, F., Piot, J., Baptiste, J., Kaas, R., Patrice, T., et al. (2011). Study on the microalgal pigments ex traction process: Performance of microwave assisted extraction. Process Biochemistry, 46(1), 59–67.CrossRefGoogle Scholar
  167. Paul, J. H. (1982). Isolation and characterization of a Chlamydomonas l-asparaginase. The Biochemical Journal, 203(1), 109–115.CrossRefGoogle Scholar
  168. Pei, D., Xu, J., Zhuang, Q., Tse, H. F., & Esteban, M. A. (2010). Induced pluripotent stem cell technology in regenerative medicine and biology. Advances in Biochemical Engineering/Biotechnology, 123(July 2015), 127–141.Google Scholar
  169. Phong, W. N., Le, C. F., Show, P. L., Chang, J. S., & Ling, T. C. (2017a). Extractive disruption process integration using ultrasonication and an aqueous two-phase system for protein recovery from Chlorella sorokiniana. Engineering in Life Sciences, 17(4), 357–369.CrossRefGoogle Scholar
  170. Phong, W. N., Show, P. L., The, W. H., The, T. X., Lim, H. M. Y., Nazri, N. S. B., et al. (2017b). Proteins recovery from wet microalgae using liquid biphasic flotation (LBF). Bioresource Technology, 44(2), 1329–1336.CrossRefGoogle Scholar
  171. Pires, J. C. M. (2017). COP21: The algae opportunity? Renewable and Sustainable Energy Reviews, 79, 867–877.CrossRefGoogle Scholar
  172. Posada, J. A., Brentner, L. B., Ramirez, A., Patel, M. K. (2016) Conceptual design of sustainable integrated microalgae biorefineries: Parametric analysis of energy use, greenhouse gas emissions and techno-economics. Algal Research, 17, 113–131.CrossRefGoogle Scholar
  173. Postma, P. R., Lam, G. P., Barbosa, M. J., Wijffels, R. H., Eppink, M. H. M., & Olivieri, G. (2016). Microalgal biorefinery for bulk and high-value products: Product extraction within cell disintegration. In D. Miklavcic (Ed.), Handbook of electroporation (pp. 1–20). Springer International Publishing.CrossRefGoogle Scholar
  174. Priyadarshani, I., & Sahu, D. (2012). Algae in aquaculture. International Journal of Health Sciences and Research, 2(1), 108–114. Retrieved from
  175. Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), 635–648.CrossRefGoogle Scholar
  176. Queiroz, M. I., Hornes, M. O., da Silva, Gonçalves, Manetti, A., Zepka, L. Q., & Jacob-Lopes, E. (2013). Fish processing wastewater as a platform of the microalgal biorefineries. Biosystems Engineering, 115(2), 195–202.CrossRefGoogle Scholar
  177. Quemeneur, M., Hamelin, J., Benomar, S., Guidici-Orticoni, M. T., Latrille, E., Steyer, J. P., et al. (2011). Changes in hydrogenase genetic diversity and proteomic patterns in mixed-culture dark fermentation of mono-, di- and tri-saccharides. International Journal of Hydrogen Energy, 36, 11654–11665.CrossRefGoogle Scholar
  178. Quinn, J. C., & Davis, R. (2015). The potentials and challenges of algae based biofuels: A review of the techno-economic, life cycle, and resource assessment modeling. Bioresource Technology, 184, 444–452.CrossRefGoogle Scholar
  179. Rahman, A., & Miller, C. D. (2017). Microalgae as a source of bioplastics. In R. Prasad Rastogi, D. Madamwar, & A. Pandey (Eds.), Algae green chemistry. Recent progress in biotechnology (pp. 189–200).Amsterdam: Elsevier.Google Scholar
  180. Ranjith Kumar, R., Hanumantha Rao, P., & Arumugam, M. (2015). Lipid extraction methods from microalgae: A comprehensive review. Frontiers in Energy Research, 2, 1–9. Scholar
  181. Reddy, M. M., Vivekanandhan, S., Misra, M., Bhatia, S. K., & Mohanty, A. K. (2013). Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in Polymer Science, 38, 1653–1689.CrossRefGoogle Scholar
  182. Rizwan, M., Lee, J. H., & Gani, R. (2015). Optimal design of microalgae-based biorefinery: Economics, opportunities and challenges. Applied Energy, 150, 69–79.CrossRefGoogle Scholar
  183. Roux, J. M., Lamotte, H., & Achard, J. L. (2017). An overview of microalgae lipid extraction in a biorefinery framework. Energy Procedia, 112, 680–688.CrossRefGoogle Scholar
  184. Ryckebosch, E., Muylaert, K., & Foubert, I. (2012). Optimization of an analytical procedure for extraction of lipids from microalgae. Journal of the American Oil Chemists’ Society, 89(2), 189–198.CrossRefGoogle Scholar
  185. Saadatnia, H., & Riahi, H. (2009). Cyanobacteria from paddy-fields in Iran as a biofertilizer in rice plants. Plant Soil Environment, 55, 207–212. Retrieved from Scholar
  186. Saai-Anuggraha, T. S., Swaminathan, T., Sulochana, S. (2016). Microbiology of platform chemical biorefinery and metabolic engineering. In S. K. Brar, S. J. Sarma, K. Pakshirajan (Eds.), Platform chemical biorefinery. Future Green Chemistry (pp. 437–450). The Netherlands: Elsevier. ISBN 978-12-802980-0.Google Scholar
  187. Safi, C., Charton, M., Ursu, A. V., Laroche, C., Zebib, B., Pontalier, P. Y., et al. (2014a). Release of hydro-soluble microalgal proteins using mechanical and chemical treatments. Algal Research, 3(1), 55–60.CrossRefGoogle Scholar
  188. Safi, C., Olivieri, G., Campos, R. P., Engelen-Smit, N., Mulder, W. J., van den Broek, L. A. M., et al. (2017). Biorefinery of microalgal soluble proteins by sequential processing and membrane filtration. Bioresource Technology, 225, 151–158.CrossRefGoogle Scholar
  189. Safi, C., Ursu, A. V., Laroche, C., Zebib, B., Merah, O., Pontalier, P. Y., et al. (2014b). Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Research, 3(1), 61–65.CrossRefGoogle Scholar
  190. Sambusiti, C., Bellucci, M., Zabaniotou, A., Beneduce, L., & Monlau, F. (2015). Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: a comprehensive review. Renewable and Sustainable Energy Reviews, 44, 20–36.CrossRefGoogle Scholar
  191. Santibañez-Aguilar, J. E., González-Campos, J. B., Ponce-Ortega, J. M., Serna-González, M., & El-Halwagi, M. M. (2014). Optimal planning and site selection for distributed multiproduct biorefineries involving economic, environmental and social objectives. Journal of Cleaner Production, 65, 270–294.CrossRefGoogle Scholar
  192. Sathe, S., & Durand, P. M. (2015). A low cost, non-toxic biological method for harvesting algal biomass. Algal Research, 11, 169–172.CrossRefGoogle Scholar
  193. Schwenzfeier, A., Wierenga, P. A., Eppink, M. H. M., & Gruppen, H. (2014). Effect of charged polysaccharides on the techno-functional properties of fractions obtained from algae soluble protein isolate. Food Hydrocolloids, 35, 9–18.CrossRefGoogle Scholar
  194. Schwenzfeier, A., Wierenga, P. A., & Gruppen, H. (2011). Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresource Technology, 102(19), 9121–9127.CrossRefGoogle Scholar
  195. Shah, Md M R, Mahfuzur, R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value. Frontiers in Plant Science, 7(531), 1–28.Google Scholar
  196. Shi, B., Wideman, G., & Wang, J. H. (2011). A new approach of bioCO2 fixation by thermoplastic processing of microalgae. Journal of Polymers and the Environment, 20, 124–131.CrossRefGoogle Scholar
  197. Sialve, B., Bernet N., Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advance, 27(4), 409–416.CrossRefGoogle Scholar
  198. Silva, C. M., Ferreira, A. F., Dias, A. P., & Costa, M. (2016). A comparison between microalgae virtual biorefinery arrangements for bio-oil production based on lab-scale results. Journal of Cleaner Production, 130, 58–67.CrossRefGoogle Scholar
  199. Singh, J. S., Kumar, A., Rai, A. N., & Singh, D. P. (2016). Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability. Frontiers in Microbiology, 7(529), 1–19.Google Scholar
  200. Sirakov, I., Velichkova, K., Stoyanova, S., Staykov, Y. (2015). The importance of microalgae for aquaculture industry. Review. International Journal of Fisheries and Aquatic Studies, 2(4), 81–84. Retrieved from–4-31.pdf.
  201. Slade, R., & Bauen, A. (2013). Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy, 53, 29–38.CrossRefGoogle Scholar
  202. Solovchenko, A. E. (2015). Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell. Photosynthesys Research, 125, 437–449.CrossRefGoogle Scholar
  203. Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96.CrossRefGoogle Scholar
  204. Sterner, C. (2013). Algenol integrated pilot-scale biorefinery for producing ethanol from hybrid algae. Report DOE/EE-0835. January 2013. Retrieved from
  205. Stolz, P., & Obermayer, B. (2005). Manufacturing microalgae for skin care. Cosmetics and Toiletries Magazine, 120(3), 99–106.Google Scholar
  206. Suarez Ruiz, C. A., van den Berg, C., Wijffels, R. H., & Eppink, M. H. M. (2017). Rubisco separation using biocompatible aqueous two-phase systems. Separation and Purification Technology, 1–8.Google Scholar
  207. Suganya, T., Varman, M., Masjuki, H. H., & Renganathan, S. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews, 55, 909–941.CrossRefGoogle Scholar
  208. Sung, M. G., Lee, B., Kim, C. W., Nam, K., & Chang, Y. K. (2017). Enhancement of lipid productivity by adopting multi-stage continuous cultivation strategy in Nannochloropsis gaditana. Bioresource Technology, 229, 20–25.CrossRefGoogle Scholar
  209. Taher, H., Al-zuhair, S., Al-marzouqi, A. H., Haik, Y., & Farid, M. (2014). Effective extraction of microalgae lipids from wet biomass for biodiesel production. Biomass and Bioenergy, 66, 159–167.CrossRefGoogle Scholar
  210. Tan, C. H., Show, P. L., Chang, J. S., Ling, T. C., & Lan, J. C. W. (2014). Novel approaches of producing bioenergies from microalgae: A recent review. Biotechnology Advances, 33(6), 1219–1227.CrossRefGoogle Scholar
  211. Templeton, D. W., Quinn, M., Van Wychen, S., Hyman, D., & Laurens, L. M. L. (2012). Separation and quantification of microalgal carbohydrates. Journal of Chromatography A, 1270, 225–234.CrossRefGoogle Scholar
  212. Thomassen, G., Van Dael, M., Lemmens, B., & Van Passel, S. (2017). A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework. Renewable and Sustainable Energy Reviews, 68(2), 876–887. Scholar
  213. Toledo-Cervantes, A., Estrada, J. M., Lebrero, R., & Muñoz, R. (2017). A comparative analysis of biogas upgrading technologies: Photosynthetic vs. physical/chemical processes. Algal Research, 25, 237–243.CrossRefGoogle Scholar
  214. Toledo-Cervantes, A., & Morales, M. (2014). Biorefinery using microalgal biomass for producing lipids, biofuels and other chemicals. In L. Torres & E. Bandala (Eds.), Energy and environment nowadays (pp. 17–56). Nova Science Publishers, Inc. ISBN 978-63117-399-8-1.Google Scholar
  215. Tredici, M. R., Bassi, N., Prussi, M., Biondi, N., Rodolfi, L., Chini Zittelli, G., et al. (2015). Energy balance of algal biomass production in a 1-ha “Green Wall Panel” plant: how to produce algal biomass in a closed reactor achieving a high net energy ratio. Applied Energy, 154, 1103–1111.CrossRefGoogle Scholar
  216. Ueno, Y., Kurano, N., & Miyachi, S. (1998). Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale. Journal of Fermentation and Bioengineering, 1998(86), 38–43.CrossRefGoogle Scholar
  217. Uggetti, E., & Puigagut, J. (2016). Photosynthetic membrane-less microbial fuel cells to enhance microalgal biomass concentration. Bioresource Technology, 218, 1016–1020.CrossRefGoogle Scholar
  218. Ursu, A. V., Marcati, A., Sayd, T., Sante-Lhoutellier, V., Djelveh, G., & Michaud, P. (2014). Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris. Bioresource Technology, 157, 134–139.CrossRefGoogle Scholar
  219. van der Voort, M. P. J., Vulsteke, E., & de Visser, C. L. M. (2015). Macro-economics of algae products (47pp). Public Output report of the EnAlgae project, Swansea, June 2015. Retrieved from September 2017.
  220. Van Reis, R., & Zydney, A. (2001). Membrane separations in biotechnology. Current Opinion in Biotechnology, 12(2), 208–211.CrossRefGoogle Scholar
  221. Vanthoor-Koopmans, M., Wijffels, R. H., Barbosa, M. J., & Eppink, M. H. M. (2013). Biorefinery of microalgae for food and fuel. Bioresource Technology, 135, 142–149.CrossRefGoogle Scholar
  222. Vigani, M., Parisi, C., Rodríguez-Cerezo, P., Barbosa, M. J., Sijtsma, L., Ploeg, M., et al. (2015). Food and feed products from microalgae: Market opportunities and challenges for the EU. Trends in Food Science & Technology, 4, 81–92.CrossRefGoogle Scholar
  223. Wang, H. M. D., Chen, Ch Ch., Huynh, P., & Chang, J Sh. (2015). Exploring the potential of using algae in cosmetic. Bioresource Technology, 184, 355–362.CrossRefGoogle Scholar
  224. Ward, A. J. (2015). The anaerobic digestion of microalgae feedstock, “life-cycle environmental impacts of biofuels and co-products”. In N. R. Moheimani, et al. (Eds.), Biomass and biofuels from microalgae, biofuel and biorefinery technologies (pp. 331–345). Switzerland: Springer International Publishing.Google Scholar
  225. Weaver, J., Husson, S. M., Murphy, L., & Wickramasinghe, S. R. (2013). Anion exchange membrane adsorbers for flow-through polishing steps: Part II. Virus, host cell protein, DNA clearance, and antibody recovery. Biotechnology and Bioengineering, 110(2), 500–510.CrossRefGoogle Scholar
  226. Wiesberg, I. L., Brigagão, G. V., de Medeiros, J. L., & de Queiroz Fernandes Araújo, O. (2017). Carbon dioxide utilization in a microalga-based biorefinery: Efficiency of carbon removal and economic performance under carbon taxation. Journal of Environmental Management, 203, 988–998.CrossRefGoogle Scholar
  227. Wijffels, R. H., & Barbosa, M. J. (2010). An outlook on microalgal biofuels. Science, 329(5993), 796–799.CrossRefGoogle Scholar
  228. Wijffels, R. H., Barbosa, M. J., & Eppink, M. H. M. (2010). Microalgae for the production of bulk chemicals and biofuels. Biofuels, Bioproducts and Biorefining, 4, 287–295.CrossRefGoogle Scholar
  229. Wu, X., Li, R., Zhao, Y., & Liu, Y. (2017). Separation of polysaccharides from Spirulina platensis by HSCCC with ethanol-ammonium sulfate ATPS and their antioxidant activities. Carbohydrate Polymers, 173, 465–472.CrossRefGoogle Scholar
  230. Xia, A., Cheng, J., Song, W., Su, H., Ding, L., Lin, R., et al. (2015). Fermentative hydrogen production using algal biomass as feedstock. Renewable and Sustainable Energy Reviews, 51, 209–230.CrossRefGoogle Scholar
  231. Xia, C., Zhang, J., Zhang, W., & Hu, B. (2011). A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides. Biotechnology for Biofuels, 4(15), 2–10.Google Scholar
  232. Xu, Y., & Boeing, W. J. (2013). Mapping biofuel field: A bibliometric evaluation of research output. Renewable and Sustainable Energy Reviews, 28, 82–91.CrossRefGoogle Scholar
  233. Yaakob, Z., Ali, E., Zainal, A., Mohamad, M., & Takriff, M. S. (2014). An overview: Biomolecules from microalgae for animal feed and aquaculture. Journal of Biological Research (Greece), 21(1), 1–10.Google Scholar
  234. Yamada, T., & Sakaguchi, K. (1982). Comparative studies on Chlorella cell walls: Induction of protoplast formation. Archives of Microbiology, 132(1), 10–13.CrossRefGoogle Scholar
  235. Yen, H. W., Yang, S. C., Chen, C. H., Jesisca, & Chang, J. S. (2015). Supercritical fluid extraction of valuable compounds from microalgal biomass. Bioresource Technology, 184, 291–296.CrossRefGoogle Scholar
  236. Yuan, J., Kendall, A., & Zhang, Y. (2015). Mass balance and life cycle assessment of biodiesel from microalgae incorporated with nutrient recycling options and technology uncertainties. GCB Bioenergy, 7(6), 1245–1259.CrossRefGoogle Scholar
  237. Zeller, M. A., Hunt, R., Jones, A., & Sharma, S. (2013). Bioplastics and their thermoplastic blends from Spirulina and Chlorella microalgae. Journal of Applied Polymer Science, 130, 3263–3275.CrossRefGoogle Scholar
  238. Zhang, F., Endo, T., Kitagawa, R., Kabeya, H., & Hirotsu, T. (2000a). Synthesis and characterization of a novel blend of polypropylene with Chlorella. Journal of Materials Chemistry, 10, 2666–2672.CrossRefGoogle Scholar
  239. Zhang, F., Kabeya, H., & Kitagawa, R. (2000b). An exploratory research of PVC-Chlorella composite material (PCCM) as effective utilization of Chlorella biologically fixing CO2. Journal of Materials Science, 5, 2603–2609.CrossRefGoogle Scholar
  240. Zhao, G., Chen, X., Wang, L., Zhou, S., Feng, H., Chen, W. N., et al. (2013). Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation. Bioresource Technology, 128, 337–344.CrossRefGoogle Scholar
  241. Zhao, L., Peng, Y., Gao, J., & Cai, W. (2014). Bioprocess intensification: an aqueous two-phase process for the purification of C-phycocyanin from dry Spirulina platensis. European Food Research and Technology, 238(3), 451–457.CrossRefGoogle Scholar
  242. Zhou, W., Min, M., Hu, B., Ma, X., Liu, Y., Wang, Q., et al. (2013). Filamentous fungi assisted bio-flocculation: A novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells. Separation and Purification Technology, 107, 158–165.CrossRefGoogle Scholar
  243. Zhu, L. (2015). Biorefinery as a promising approach to promote microalgae industry: An innovative framework. Renewable and Sustainable Energy Reviews, 41, 1376–1384.CrossRefGoogle Scholar
  244. Zhu, X., Rong, J., Chen, H., He, Ch., Hu, W., & Wang, Q. (2016). An informatics-based analysis of developments to date and prospects for the application of microalgae in the biological sequestration of industrial flue gas. Applied Microbiology Biotechnology, 100, 2073–2082.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Pierre-Louis Gorry
    • 1
  • León Sánchez
    • 2
  • Marcia Morales
    • 1
  1. 1.Processes and Technology Department and Doctoral Program in Natural Sciences and EngineeringMetropolitan Autonomous University Campus CuajimalpaMexico CityMexico
  2. 2.Doctoral Program in BiotechnologyMetropolitan Autonomous University Campus IztapalapaIztapalapa, Mexico CityMexico

Personalised recommendations