Process Integration Applied to Microalgal Biofuels Production

  • Alcinda Patrícia de Carvalho Lopes
  • Francisca Maria Loureiro Ferreira dos Santos
  • Vítor Jorge Pais Vilar
  • José Carlos Magalhães Pires
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The rapid development of modern society has resulted in an increased demand for energy and, consequently, an increased use of fossil fuel reserves, compromising the energy sector sustainability. Moreover, the use of this source of energy led to the accumulation of greenhouse gases (GHGs) in atmosphere, which are associated with climate change. In this context, European Union has established new directives regarding GHG emissions and the renewable energy use. Microalgae may have an important role in the achievement of these goals. These photosynthetic microorganisms have a high growth rate, are able to capture CO2, the biomass can be used to produce biofuels, constituting an undeniable economic potential. Microalgae may also be a source of low carbon fuel, being one of the most studied biofuels feedstock. They are considered a sustainable energy resource, able to reduce significantly the dependence on fossil fuel. They can grow on places that are unsuitable for agriculture, not competing with land for food production. The use of wastewater as microalgal culture medium will reduce the required amount of freshwater and nutrients, achieving simultaneously an effluent with low nutrient concentrations. An important step to increase the competitiveness (promoting simultaneously the environmental sustainability) of microalgal biofuels regarding fossil fuels is the optimization of culture parameters using wastewater as culture medium. Thus, this chapter aims to present the recent studies regarding the integration of wastewater treatment and microalgal cultivation for biomass/biofuel production.

Keywords

Biofuel Microalgae Process integration Wastewater treatment Sustainability 

Notes

Acknowledgements

This work was financially supported by: Project POCI-01-0145-FEDER-006939 (LEPABE), Project POCI-01-0145-FEDER-006984 (Associate Laboratory LSRE-LCM) and Project AlProcMat@N2020-NORTE-01-0145-FEDER-000006—funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI)—and by national funds through FCT—Fundação para a Ciência e a Tecnologia. V. J. P. Vilar acknowledges the FCT Investigator 2013 Programme (IF/00273/2013). J. C. M. Pires acknowledges the FCT Investigator 2015 Programme (IF/01341/2015).

References

  1. Abreu, A. P., Fernandes, B., Vicente, A. A., Teixeira, J., & Dragone, G. (2012). Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresource Technology, 118, 61–66.CrossRefGoogle Scholar
  2. Anbalagan, A. (2016). Indigenous microalgae-activated sludge cultivation system for wastewater treatment. Mälardalen University.Google Scholar
  3. Arbib, Z., De Godos, I., Ruiz, J., & Perales, J. A. (2017). Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Science of the Total Environment, 589, 66–72.CrossRefGoogle Scholar
  4. Aslan, S., & Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28, 64–70.CrossRefGoogle Scholar
  5. Athanasoulia, E., Melidis, P., & Aivasidis, A. (2012). Optimization of biogas production from waste activated sludge through serial digestion. Renewable Energy, 47, 147–151.CrossRefGoogle Scholar
  6. Barros, A. I., Gonçalves, A. L., Simões, M., & Pires, J. C. M. (2015). Harvesting techniques applied to microalgae: A review. Renewable and Sustainable Energy Reviews, 41, 1489–1500.CrossRefGoogle Scholar
  7. Becker, E. W. (1994). Microalgae: Biotechnology and microbiology. U. K.: Cambridge University Press.Google Scholar
  8. Benemann, J. R., & Oswald, W. J. (1996). Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final report. Berkeley, CA (United States): Department of Civil Engineering, California University.Google Scholar
  9. Borowitzka, M. A. (1988). Fats, oils and carbohydrates. In M. A. Borowitzka & L. J. Borowitzka (Eds.), Micro-algal biotechnology. Cambridge: Cambridge University Press.Google Scholar
  10. Borowitzka, M. A., & Borowitzka, L. J. (1988). Micro-algal biotechnology. UK: Cambridge University Press.Google Scholar
  11. Butler, E., Hung, Y.-T., Suleiman Al Ahmad, M., Yeh, R. Y.-L., Liu, R. L.-H., & Fu, Y.-P. (2017). Oxidation pond for municipal wastewater treatment. Applied Water Science, 7, 31–51.CrossRefGoogle Scholar
  12. Cabanelas, I. T. D., Arbib, Z., Chinalia, F. A., Souza, C. O., Perales, J. A., Almeida, P. F., et al. (2013). From waste to energy: Microalgae production in wastewater and glycerol. Applied Energy, 109, 283–290.CrossRefGoogle Scholar
  13. Cai, T., Park, S. Y., & Li, Y. B. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369.CrossRefGoogle Scholar
  14. Calicioglu, O., & Demirer, G. N. (2016). Biogas production from waste microalgal biomass obtained from nutrient removal of domestic wastewater. Waste and Biomass Valorization, 7, 1397–1408.CrossRefGoogle Scholar
  15. Campos, J. L., Valenzuela-Heredia, D., Pedrouso, A., Belmonte, M., & Mosquera-Corral, A. (2016). Greenhouse gases emissions from wastewater treatment plants: Minimization, treatment, and prevention. Journal of Chemistry, 2016, 1–12.Google Scholar
  16. Cardinale, B. J. (2011). Biodiversity improves water quality through niche partitioning. Nature, 472, 86–89.CrossRefGoogle Scholar
  17. Carvalho, A. P., Meireles, L. A., & Malcata, F. X. (2006). Microalgal reactors: A review of enclosed system designs and performances. Biotechnology Progress, 22(6), 1490–1506.CrossRefGoogle Scholar
  18. Cerón Garcı́a, M., Sánchez Mirón, A., Fernández Sevilla, J. M., Molina-Grima, E., & Garcı́a Camacho, F. (2005). Mixotrophic growth of the microalga Phaeodactylum tricornutum: Influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochemistry, 40, 297–305.CrossRefGoogle Scholar
  19. Chen, C. Y., Kao, P. C., Tsai, C. J., Lee, D. J., & Chang, J. S. (2013). Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresource Technology, 145, 307–312.CrossRefGoogle Scholar
  20. Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101, 3097–3105.CrossRefGoogle Scholar
  21. Chiranjeevi, P., & Mohan, S. V. (2016). Critical parametric influence on microalgae cultivation towards maximizing biomass growth with simultaneous lipid productivity. Renewable Energy, 98, 64–71.CrossRefGoogle Scholar
  22. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.CrossRefGoogle Scholar
  23. Chokshi, K., Pancha, I., Ghosh, A., & Mishra, S. (2016). Microalgal biomass generation by phycoremediation of dairy industry wastewater: An integrated approach towards sustainable biofuel production. Bioresource Technology, 221, 455–460.CrossRefGoogle Scholar
  24. Chorus, I., & Bartram, J. (1999). Toxic cyanobacteria in water: a guide to their public health consequences, monitoring, and management. London: E & FN Spon.CrossRefGoogle Scholar
  25. Christenson, L., & Sims, R. (2011). Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology Advances, 29, 686–702.CrossRefGoogle Scholar
  26. Correll, D. L. (1998). The role of phosphorus in the eutrophication of receiving waters: A review. Journal of Environmental Quality, 27(2), 261–266.CrossRefGoogle Scholar
  27. Craggs, R., Sutherland, D., & Campbell, H. (2012). Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. Journal of Applied Phycology, 24, 329–337.CrossRefGoogle Scholar
  28. Danquah, M. K., Ang, L., Uduman, N., Moheimani, N., & Forde, G. M. (2009a). Dewatering of microalgal culture for biodiesel production: Exploring polymer flocculation and tangential flow filtration. Journal of Chemical Technology and Biotechnology, 84, 1078–1083.CrossRefGoogle Scholar
  29. Danquah, M. K., Gladman, B., Moheimani, N., & Forde, G. M. (2009b). Microalgal growth characteristics and subsequent influence on dewatering efficiency. Chemical Engineering Journal, 151, 73–78.CrossRefGoogle Scholar
  30. Dasgupta, C. N., Jose Gilbert, J., Lindblad, P., Heidorn, T., Borgvang, S. A., Skjanes, K., et al. (2010). Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. International Journal of Hydrogen Energy, 35, 10218–10238.CrossRefGoogle Scholar
  31. De La Noue, J., & De Pauw, N. (1988). The potential of microalgal biotechnology: A review of production and uses of microalgae. Biotechnology Advances, 6, 725–770.CrossRefGoogle Scholar
  32. De La Noüe, J., Laliberté, G., & Proulx, D. (1992). Algae and waste water. Journal of Applied Phycology, 4, 247–254.CrossRefGoogle Scholar
  33. Drira, N., Piras, A., Rosa, A., Porcedda, S., & Dhaouadi, H. (2016). Microalgae from domestic wastewater facility’s high rate algal pond: Lipids extraction, characterization and biodiesel production. Bioresource Technology, 206, 239–244.CrossRefGoogle Scholar
  34. EPA Office of Water. (2006). Wastewater management fact sheet, energy conservation.Google Scholar
  35. Feng, Y., Li, C., & Zhang, D. (2011). Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresource Technology, 102, 101–105.CrossRefGoogle Scholar
  36. Goiris, K., Van Colen, W., Wilches, I., León-Tamariz, F., De Cooman, L., & Muylaert, K. (2015). Impact of nutrient stress on antioxidant production in three species of microalgae. Algal Research, 7, 51–57.CrossRefGoogle Scholar
  37. Goncalves, A. L., Pires, J. C. M., & Simoes, M. (2016). The effects of light and temperature on microalgal growth and nutrient removal: An experimental and mathematical approach. RSC Advances, 6, 22896–22907.CrossRefGoogle Scholar
  38. Gonçalves, A. L., Pires, J. C. M., & Simões, M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24, Part B, 403–415.CrossRefGoogle Scholar
  39. Gouveia, L., & Empis, J. (2003). Relative stabilities of microalgal carotenoids in microalgal extracts, biomass and fish feed: Effect of storage conditions. Innovative Food Science & Emerging Technologies, 4, 227–233.CrossRefGoogle Scholar
  40. Guštin, S., & Marinšek-Logar, R. (2011). Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent. Process Safety and Environmental Protection, 89, 61–66.CrossRefGoogle Scholar
  41. Han, S. F., Jin, W. B., Tu, R. J., Abomohra, A., & Wang, Z. H. (2016). Optimization of aeration for biodiesel production by Scenedesmus obliquus grown in municipal wastewater. Bioprocess and Biosystems Engineering, 39, 1073–1079.CrossRefGoogle Scholar
  42. Harun, R., Singh, M., Forde, G. M., & Danquah, M. K. (2010). Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 14, 1037–1047.CrossRefGoogle Scholar
  43. Hernandez, D., Riano, B., Coca, M., Solana, M., Bertucco, A., & Garcia-Gonzalez, M. C. (2016). Microalgae cultivation in high rate algal ponds using slaughterhouse wastewater for biofuel applications. Chemical Engineering Journal, 285, 449–458.CrossRefGoogle Scholar
  44. Hoffmann, J. P. (1998). Wastewater treatment with suspended and nonsuspended algae. Journal of Phycology, 34, 757–763.CrossRefGoogle Scholar
  45. Jia, H., Yuan, Q., & Rein, A. (2016). Removal of nitrogen from wastewater using microalgae and microalgae—Bacteria consortia. Cogent Environmental Science, 2, 1275089.CrossRefGoogle Scholar
  46. Kochen, L. H. (2010). Caracterização de fotobioreator air-lift para cultivo de microalgas. Universidade Federal do Rio Grande do Sul.Google Scholar
  47. Kong, Q. X., Li, L., Martinez, B., Chen, P., & Ruan, R. (2010). Culture of microalgae chlamydomonas reinhardtii in wastewater for biomass feedstock production. Applied Biochemistry and Biotechnology, 160, 9–18.CrossRefGoogle Scholar
  48. Lam, M. K., Yusoff, M. I., Uemura, Y., Lim, J. W., Khoo, C. G., Lee, K. T., et al. (2017). Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies. Renewable Energy, 103, 197–207.CrossRefGoogle Scholar
  49. Larsdotter, K. (2006). Wastewater treatment with microalgae—A literature review. Vatten, 62, 31–38.Google Scholar
  50. Lau, P. S., Tam, N. F. Y., & Wong, Y. S. (1995). Effect of algal density on nutrient removal from primary settled wastewater. Environmental Pollution, 89, 59–66.CrossRefGoogle Scholar
  51. Lavoie, A., & De La Noüe, J. (1983). Harvesting microalgae with chitosan. Journal of the World Mariculture Society, 14, 685–694.CrossRefGoogle Scholar
  52. Lee, K., & Lee, C.-G. (2001). Effect of light/dark cycles on wastewater treatments by microalgae. Biotechnology and Bioprocess Engineering, 6, 194–199.CrossRefGoogle Scholar
  53. Lee, R. E. (2008). Phycology. United States of America: Cambridge University Press.CrossRefGoogle Scholar
  54. Li, Y., Chen, Y.-F., Chen, P., Min, M., Zhou, W., Martinez, B., et al. (2011). Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 102, 5138–5144.CrossRefGoogle Scholar
  55. Li, Y., Hosman, M., Wu, N., Lan, C. Q., & Dubois-Calero, N. (2008). Biofuels from microalgae. Biotechnology Progress, 24(4), 815–820.Google Scholar
  56. Lower, S. K. (1999). Carbonate equilibria in natural waters [Online]. Available: http://www.chem1.com/acad/pdf/c3carb.pdf. Accessed April 8, 2017.
  57. Lutzu, G. A., Zhang, W., & Liu, T. Z. (2016). Feasibility of using brewery wastewater for biodiesel production and nutrient removal by Scenedesmus dimorphus. Environmental Technology, 37, 1568–1581.CrossRefGoogle Scholar
  58. Martin, J. H., Knauer, G. A., Karl, D. M., & Broenkow, W. W. (1987). VERTEX: Carbon cycling in the northeast Pacific. Deep Sea Research Part A. Oceanographic Research Papers, 34, 267–285.CrossRefGoogle Scholar
  59. Mccarty, P. L., Bae, J., & Kim, J. (2011). Domestic wastewater treatment as a net energy producer-can this be achieved? Environmental Science & Technology, 45, 7100–7106.CrossRefGoogle Scholar
  60. Minster, J.-F., & Boulahdid, M. (1987). Redfield ratios along isopycnal surfaces—A complementary study. Deep Sea Research Part A. Oceanographic Research Papers, 34, 1981–2003.CrossRefGoogle Scholar
  61. Molina Grima, E., Belarbi, E. H., Acién Fernández, F. G., Robles Medina, A., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnology Advances, 20, 491–515.CrossRefGoogle Scholar
  62. Molina Grima, E., Fernández, F. G. A., Garcı́a Camacho, F., & Chisti, Y. (1999). Photobioreactors: Light regime, mass transfer, and scaleup. Journal of Biotechnology, 70, 231–247.CrossRefGoogle Scholar
  63. Mostafa, S. S. M. (2012). Microalgal biotechnology: Prospects and applications. In N. K. Dhal & S. C. Sahu (Eds.), Plant Science. InTech: Rijeka.Google Scholar
  64. Mulbry, W., Kondrad, S., Pizarro, C., & Kebede-Westhead, E. (2008). Treatment of dairy manure effluent using freshwater algae: Algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresource Technology, 99, 8137–8142.CrossRefGoogle Scholar
  65. Munir, N., Imtiaz, A., Sharif, N., & Naz, S. (2015). Optimization of growth conditions of different algal strains and determination of their lipid contents. The Journal of Animal & Plant Sciences, 25(2), 546–553.Google Scholar
  66. Muñoz, R., & Guieysse, B. (2006). Algal–bacterial processes for the treatment of hazardous contaminants: A review. Water Research, 40, 2799–2815.CrossRefGoogle Scholar
  67. Nascimento, I. A., Cabanelas, I. T. D., Santos, J. N. D., Nascimento, M. A., Sousa, L., & Sansone, G. (2015). Biodiesel yields and fuel quality as criteria for algal-feedstock selection: Effects of CO2-supplementation and nutrient levels in cultures. Algal Research, 8, 53–60.CrossRefGoogle Scholar
  68. Novoveská, L., Zapata, A. K. M., Zabolotney, J. B., Atwood, M. C., & Sundstrom, E. R. (2016). Optimizing microalgae cultivation and wastewater treatment in large-scale offshore photobioreactors. Algal Research, 18, 86–94.CrossRefGoogle Scholar
  69. Olguín, E. J. (2003). Phycoremediation: Key issues for cost-effective nutrient removal processes. Biotechnology Advances, 22, 81–91.CrossRefGoogle Scholar
  70. Oswald, W., & Gotass, H. (1957). Photosynthesis in sewage treatment. Transactions of the American Society of Civil Engineers, 73 (United States), (Medium: X; Size).Google Scholar
  71. Oswald, W. J. (2003). My sixty years in applied algology. Journal of Applied Phycology, 15, 99–106.CrossRefGoogle Scholar
  72. Park, J. B., Craggs, R. J., & Shilton, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102, 35–42.CrossRefGoogle Scholar
  73. Pires, J., Alvim-Ferraz, M., Martins, F., & Simoes, M. (2013). Wastewater treatment to enhance the economic viability of microalgae culture. Environmental Science and Pollution Research, 20, 5096–5105.CrossRefGoogle Scholar
  74. Pires, J. C. M. (2017). COP21: The algae opportunity? Renewable and Sustainable Energy Reviews, 79, 867–877.CrossRefGoogle Scholar
  75. Pizarro, C., Mulbry, W., Blersch, D., & Kangas, P. (2006). An economic assessment of algal turf scrubber technology for treatment of dairy manure effluent. Ecological Engineering, 26, 321–327.CrossRefGoogle Scholar
  76. Prandini, J. M., Da Silva, M. L. B., Mezzari, M. P., Pirolli, M., Michelon, W., & Soares, H. M. (2016). Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp. Bioresource Technology, 202, 67–75.CrossRefGoogle Scholar
  77. Pulz, O. (2001). Photobioreactors: Production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology, 57, 287–293.CrossRefGoogle Scholar
  78. Pushparaj, B., Pelosi, E., Tredici, M. R., Pinzani, E., & Materassi, R. (1997). As integrated culture system for outdoor production of microalgae and cyanobacteria. Journal of Applied Phycology, 9, 113–119.CrossRefGoogle Scholar
  79. Rai, L. C., Gaur, J. P., & Kumar, H. D. (1981). Phycology and heavy-metal pollution. Biological Reviews, 56, 99–151.CrossRefGoogle Scholar
  80. Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88, 3411–3424.CrossRefGoogle Scholar
  81. Richmond, A. (2004). Handbook of microalgal culture—Biotechnology and applied phycology. USA: Blackwell Science.Google Scholar
  82. Rocha, L. G. (2012). Dossiê técnico: Cultivo de Microalgas.Google Scholar
  83. Safonova, E., Kvitko, K. V., Iankevitch, M. I., Surgko, L. F., Afti, I. A., & Reisser, W. (2004). Biotreatment of industrial wastewater by selected algal-bacterial consortia. Engineering in Life Sciences, 4, 347–353.CrossRefGoogle Scholar
  84. Santos, L., Calazans, N., Marinho, Y., Santos, A., Nascimento, R., Vasconcelos, R., Dantas, D. & Gálvez, A. (2009). Influência do fotoperíodo no crescimento da Chlorella vulgaris (Chlorophyceae) visando produção de biodiesel. http://www.eventosufrpe.com.br/jepex2009/cd/resumos/R0358-1.pdf.
  85. Shaffer, G., Bendtsen, J., & Ulloa, O. (1999). Fractionation during remineralization of organic matter in the ocean. Deep Sea Research Part I: Oceanographic Research Papers, 46, 185–204.CrossRefGoogle Scholar
  86. Sheehan, J., Dunahay, T., Benemann, J., & Roessler, P. (1998). Look back at the U.S. department of energy’s aquatic species program: Biodiesel from Algae; Close-out report. Golden, CO. (US): National Renewable Energy Lab.Google Scholar
  87. Sicko-Goad, L., & Andresen, N. A. (1991). Effect of growth and light/dark cycles on diatom lipid content and composition. Journal of Phycology, 27, 710–718.CrossRefGoogle Scholar
  88. Silva-Benavides, A. M., & Torzillo, G. (2011). Nitrogen and phosphorus removal through laboratory batch cultures of microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal and as co-cultures. Journal of Applied Phycology, 24, 267–276.CrossRefGoogle Scholar
  89. Silva, N. F. P., Gonçalves, A. L., Moreira, F. C., Silva, T. F. C. V., Martins, F. G., Alvim-Ferraz, M. C. M., et al. (2015). Towards sustainable microalgal biomass production by phycoremediation of a synthetic wastewater: A kinetic study. Algal Research, 11, 350–358.CrossRefGoogle Scholar
  90. Singh, D., & Yadav, K. (2015). Biofixation of carbon dioxide using mixed culture of microalgae. Indian Journal of Biotechnology, 14, 228–232.Google Scholar
  91. Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87–96.CrossRefGoogle Scholar
  92. Sydney, E. B., Da Silva, T. E., Tokarski, A., Novak, A. C., De Carvalho, J. C., Woiciecohwski, A. L., et al. (2011). Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Applied Energy, 88, 3291–3294.CrossRefGoogle Scholar
  93. Takahashi, T., Broecker, W. S., & Langer, S. (1985). Redfield ratio based on chemical data from isopycnal surfaces. Journal of Geophysical Research: Oceans, 90, 6907–6924.CrossRefGoogle Scholar
  94. Tam, N. F. Y., & Wong, Y. S. (1989). Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environmental Pollution, 58, 19–34.CrossRefGoogle Scholar
  95. Toro, J. E. (1989). The growth rate of two species of microalgae used in shellfish hatcheries cultured under two light regimes. Aquaculture Research, 20, 249–254.CrossRefGoogle Scholar
  96. Tredici, M. R. (2002). Bioreactors, photo. Encyclopedia of Bioprocess Technology. USA: Wiley.Google Scholar
  97. Tripathi, R., Singh, J., & Thakur, I. S. (2015). Characterization of microalga Scenedesmus sp. ISTGA1 for potential CO2 sequestration and biodiesel production. Renewable Energy, 74, 774–781.CrossRefGoogle Scholar
  98. Uduman, N., Qi, Y., Danquah, M. K., Forde, G. M., & Hoadley, A. (2010). Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. Journal of Renewable and Sustainable Energy, 2, 012701.CrossRefGoogle Scholar
  99. USEPA. (2011). Principles of design and operations of wastewater treatment pond systems for plant operators, engineers, and managers.Google Scholar
  100. Walter, A. (2011). Estudo do processo biotecnológico para obtenção de ficocianina a partir da microalga Spirulina platensis sob diferentes condições de cultivo. Pós-graduação, Universidade Federal do Paraná.Google Scholar
  101. Wang, B., & Lan, C. Q. (2011). Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresource Technology, 102, 5639–5644.CrossRefGoogle Scholar
  102. Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., et al. (2010). Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Applied Biochemistry and Biotechnology, 162, 1174–1186.CrossRefGoogle Scholar
  103. Wang, L., & Nancollas, G. H. (2008). Calcium orthophosphates: Crystallization and dissolution. Chemical Reviews, 108, 4628–4669.CrossRefGoogle Scholar
  104. Yaakob, Z., & Fakir, K. (2011). An overview of microalgae as a wastewater treatment. Jordan International Energy Conference, Amman.Google Scholar
  105. Yau, C. C. (2016). Tecnologias dos processos de lamas ativadas. University of Porto - Faculty of Engineering.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Alcinda Patrícia de Carvalho Lopes
    • 1
    • 2
  • Francisca Maria Loureiro Ferreira dos Santos
    • 1
    • 2
  • Vítor Jorge Pais Vilar
    • 2
  • José Carlos Magalhães Pires
    • 1
  1. 1.Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Chemical Engineering DepartmentUniversity of Porto - Faculty of EngineeringPortoPortugal
  2. 2.Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Chemical Engineering DepartmentUniversity of Porto - Faculty of EngineeringPortoPortugal

Personalised recommendations