Skip to main content

Biofuels from Microalgae: Photobioreactor Exhaust Gases in Oxycombustion Systems

  • Chapter
  • First Online:
Energy from Microalgae

Abstract

The aim of this chapter is to present a comprehensive overview of integrated bio-oxycombustion systems with photobioreactors. Divided into seven distinct topics, the chapter discusses issues related to fundamentals of oxycombustion, the operational implications for oxycombustion-enhanced performance, oxygen produced by photosynthesis, volatile organic compounds as energy source, photobioreactors design, the process integration in bio-oxycombustion systems, and the hurdles of bio-oxycombustion technology, summarizing a range of useful strategies directed to the sustainable development of industrial combustion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banaszkiewicz, T., et al. (2014). Comparative analysis of oxygen production for oxy-combustion application. Energy Procedia, 51, 127–134.

    Article  Google Scholar 

  • Barber, J. (2017). A mechanism for water splitting and oxygen production in photosynthesis. Nature Plants, 3, 17041.

    Article  Google Scholar 

  • Baukal, C. E. (2013). Oxygen-enhanced combustion (2nd ed.). Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Bergene, T. (1996). The efficiency and physical principles of photolysis of water by microalgae. International Journal of Hydrogen Energy, 21, 189–194.

    Article  Google Scholar 

  • Bernal, O. I., et al. (2014). Specific photosynthetic rate enhancement by cyanobacteria coated onto paper enables engineering of highly reactive cellular biocomposite “leaves”. Biotechnology and Bioengineering, 111, 1993–2008.

    Article  Google Scholar 

  • Borowitzka, M. A. (1999). Commercial production of microalgae: Ponds, tanks, tubes and fermenters. Journal of Biotechnology, 70, 313–321.

    Article  Google Scholar 

  • Budzianowski, W. M., & Postawa, K. (2016). Total chain integration of sustainable biorefinery systems. Applied Energy, 184, 1432–1446.

    Article  Google Scholar 

  • Buhre, B. J. P., et al. (2005). Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science, 31, 283–307.

    Article  Google Scholar 

  • Burris, J. E. (1981). Effects of oxygen and inorganic carbon concentrations on the photosynthetic quotients of marine algae. Marine Biology, 65, 215–219.

    Article  Google Scholar 

  • Cengel, Y. A. (2003). Heat transfer: A practical approach (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Chen, C., et al. (2012a). Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis. Bioresource Technology, 144, 563–571.

    Article  Google Scholar 

  • Chen, L., et al. (2012b). Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Progress in Energy and Combustion Science, 38, 156–214.

    Article  Google Scholar 

  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    Article  Google Scholar 

  • Chorowski, M., & Gizicki, W. (2015). Technical and economic aspects of oxygen separation for oxy-fuel purposes. Archives of Thermodynamics, 36, 157–10.

    Google Scholar 

  • Cogne, G., et al. (2005). Design, operation, and modeling of a membrane photobioreactor to study the growth of the cyanobacterium Arthrospira platensis in space conditions. Biotechnology Progress, 21, 741–750.

    Article  Google Scholar 

  • Daood, S. S., et al. (2012). Deep-staged, oxygen enriched combustion of coal. Fuel, 101, 187–196.

    Article  Google Scholar 

  • DOE. U.S. Department of Energy. Available at: https://energy.gov/.

  • Dudareva, N. et al. (2013). Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 198, 16–32.

    Article  Google Scholar 

  • Eriksen, N. T., et al. (2007). On-line estimation of O2 production, CO2 uptake, and growth kinetics of microalgal cultures in a gastight photobioreactor. Journal Applied Phycology, 19, 161–174.

    Article  Google Scholar 

  • Eroglu, E., & Melis, A. (2010). Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii var. Showa. Bioresource Technology, 101, 2359–2366.

    Article  Google Scholar 

  • Fay, P. (1983). The blue-greens (cyanophyta-cyanobacteria) (5ª ed., p. 88). London: Edward Arnold Publishers, Studies in Biology 160.

    Google Scholar 

  • Fink, P. (2007). Ecological functions of volatile organic compounds in aquatic systems. Marine and Freshwater Behaviour and Physiology, 40, 155–168.

    Article  Google Scholar 

  • Gładysz, P., et al. (2017). Thermodynamic assessment of an integrated MILD oxyfuel combustion power plant. Energy (in press).

    Google Scholar 

  • Goldstein, A. H., & Galbally, I. E. (2007). Known and unexplored organic constituents in the Earth’s atmosphere. Environmental Science and Technology, 41, 1415–1421.

    Google Scholar 

  • Griffiths, J. F., & Barnard, J. A. (1995). Flame and combustion (3rd ed.). London, UK: Chapman and Hall.

    Book  Google Scholar 

  • Hasegawa, M., et al. (2012). Volatile organic compounds derived from 2-keto-acid decarboxylase in Microcystis aeruginosa. Microbes and Environments, 27, 525–528.

    Article  Google Scholar 

  • Heldt, H.-W., & Piechulla, B. (2011). Plant biochemistry (4ª ed., p. 618). German edition: Academic Press in an imprint of Elsevier.

    Chapter  Google Scholar 

  • Higginbotham, P., et al. (2011). Oxygen supply for oxyfuel CO2 capture. International Journal of Greenhouse Gas Control, 55, S194–S203.

    Article  Google Scholar 

  • Holdt, S. L., et al. (2013). A novel closed system bubble column photobioreactor for detailed characterisation of micro- and macroalgal growth. Journal of Applied Phycology, 26, 825–835.

    Article  Google Scholar 

  • Huang, Q., et al. (2017). Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering, 3, 318–329.

    Article  Google Scholar 

  • IHEA. Industrial Heating Equipment Association. (2007). Improving process heating system performance: A sourcebook for industry. Prepared for the United States Department of Energy Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program.

    Google Scholar 

  • Jacob-Lopes, E., et al. (2015). Microalgal biorefineries, biomass production and uses (Chap. 5). In E. Atazadeh (Ed.), InTech.

    Google Scholar 

  • Jacob-Lopes, E., et al. (2016). Bioprocesso de conversão de dióxido de carbono de emissões industriais, bioprodutos, seus usos e fotobiorreator híbrido. Patent WO 2016041028 A1.

    Google Scholar 

  • Jacob-Lopes, E., et al. (2017). Process and system for re-using carbon dioxide transformed by photosynthesis into oxygen and hydrocarbons used in an integrated manner to increase the thermal efficiency of combustion systems. Patent WO 2017/112984 A1.

    Google Scholar 

  • Jacob-Lopes, E., & Franco, T. T. (2013). From oil refinery to microalgal biorefinery. Journal of CO 2 Utilization, 2, 1–7.

    Article  Google Scholar 

  • Jacob-Lopes, E., et al. (2009). Development of operational strategies to remove carbon dioxide in photobioreactors. Chemical Engineering Journal, 153, 120–126.

    Article  Google Scholar 

  • Jacob-Lopes, E., et al. (2010). Biotransformations of carbon dioxide in photobioreactors. Energy Conversion and Management, 51, 894–900.

    Article  Google Scholar 

  • Jajesniak, P., et al. (2014). Carbon dioxide capture and utilization using biological systems: Opportunities and challenges. Bioprocessing & Biotechniques, 4, 3.

    Google Scholar 

  • Khalil, A. E. E., & Gupta, A. K. (2017). The role of CO2 on oxy-colorless distributed combustion. Applied Energy, 188, 466–474.

    Article  Google Scholar 

  • Kliphuis, A. M. J., et al. (2010). Photosynthetic efficiency of Chlorella sorokiniana in a turbulently mixed short light-path photobioreactor. Biotechnology Progress, 26, 687–696.

    Article  Google Scholar 

  • Koytsoumpa, E. I., et al. (2017). The CO2 economy: Review of CO2 capture and reuse technologies. The Journal of Supercritical Fluids (in press).

    Google Scholar 

  • Lacava, P. T., et al. (2006). Thermal analysis of an enriched flame incinerator for aqueous residues. Energy, 31, 528–545.

    Article  Google Scholar 

  • Linde Group. (2017). Available at: http://www.linde-engineering.com/en/index.html.

  • Leung, D. Y. C., et al. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426–444.

    Article  Google Scholar 

  • Medipally, S. R., et al. (2015). Microalgae as sustainable renewable energy feedstock for biofuel production. BioMed Research International, 2015, 519513.

    Article  Google Scholar 

  • Molina-Grima, E., et al. (2001). Tubular photobioreactor design for algal cultures. Journal of Biotechnology, 92, 113–131.

    Article  Google Scholar 

  • Moncada, J., et al. (2016). Design strategies for sustainable biorefineries. Biochemical Engineering Journal, 116, 122–134.

    Article  Google Scholar 

  • Muñoz, J., et al. (2004). Effects of ionic strength on the production of short chain volatile hydrocarbons by Dunaliella salina (Teodoresco). Chemosphere, 54, 1267–1271.

    Article  Google Scholar 

  • Normann, F., et al. (2009). Emission control of nitrogen oxides in the oxy-fuel process. Progress in Energy and Combustion Science, 35, 385–397.

    Article  Google Scholar 

  • Olajire, A. A. (2010). CO2 capture and separation technologies for end-of-pipe applications—a review. Energy, 35, 2610–2628.

    Article  Google Scholar 

  • Pawar, S. (2016). Effectiveness mapping of open raceway pond and tubular photobioreactors for sustainable production of microalgae biofuel. Renewable and Sustainable Energy Reviews, 62, 640–653.

    Article  Google Scholar 

  • Raeesossadati, M. J., et al. (2014). CO2 bioremediation by microalgae in photobioreactors: Impacts of biomass and CO2 concentrations, light, and temperature. Algal Research, 6, 8–85.

    Article  Google Scholar 

  • Raso, S., et al. (2012). Effect of oxygen concentration on the growth of Nannochloropsis sp. at low light intensity. Journal of Applied Phycology, 24, 863–871.

    Article  Google Scholar 

  • Razzak, S. A., et al. (2017). Biological CO2 fixation with production of microalgae in wastewater—a review. Renewable and Sustainable Energy Reviews, 76, 379–390.

    Article  Google Scholar 

  • Santos, A. B., et al. (2016). Biogeneration of volatile organic compounds produced by Phormidium autumnale in heterotrophic bioreactor. Journal of Applied Phycology, 28, 1561–1570.

    Article  Google Scholar 

  • Scheffknecht, G., et al. (2011). Oxy-fuel coal combustion—a review of the current state-of-the-art. International Journal of Greenhouse Gas Control, 5, 16–35.

    Article  Google Scholar 

  • Schirmer, A. et al. (2010). Microbial Biosynthesis of Alkanes. Science, 329, 559–562.

    Article  Google Scholar 

  • Smith, L. M., et al. (2012). Quantifying variation in water column photosynthetic quotient with changing field conditions in Narragansett Bay, RI, USA. Journal of Plankton Research, 34, 437–442.

    Article  Google Scholar 

  • Spilling, K., et al. (2015). Interaction effects of light, temperature and nutrient limitations (N, P and Si) on growth, stoichiometry and photosynthetic parameters of the cold-water diatom Chaetoceros wighamii. PLoS One, 10, 1–18.

    Article  Google Scholar 

  • Stanger, R., & Wall, T. (2011). Sulphur impacts during pulverised coal combustion in oxy-fuel technology for carbon capture and storage. Progress in Energy and Combustion Science, 37, 69–88.

    Article  Google Scholar 

  • Stanger, R., et al. (2015). Oxyfuel combustion for CO2 capture in power plants. International Journal of Greenhouse Gas Control, 40, 55–125.

    Article  Google Scholar 

  • Sun, S.-M., et al. (2012). Volatile compounds of the green alga, Capsosiphon fulvescens. Journal of Applied Phycology, 24, 1003–1013.

    Article  Google Scholar 

  • Tao, Q., et al. (2017). Enhanced biomass/biofuel production and nutrient removal in an algal biofilm airlift photobioreactor. Algal Research, 21, 9–15.

    Article  Google Scholar 

  • Toftegaard, M. B., et al. (2010). Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science, 36, 581–625.

    Article  Google Scholar 

  • Vasumathi, K. K., et al. (2012). Parameters influencing the design of photobioreactor for the growth of microalgae. Renewable and Sustainable Energy Reviews, 16, 5443–5450.

    Article  Google Scholar 

  • Wall, T., et al. (2009). An overview on oxyfuel coal combustion—state of the art research and technology development. Chemical Engineering Research and Design, 87, 1003–1016.

    Article  Google Scholar 

  • Wang, B., et al. (2012). Closed photobioreactors for production of microalgal biomasses. Biotechnology Advances, 30, 904–912.

    Article  Google Scholar 

  • Williams, P. J. B., & Laurens, L. M. L. (2010). Microalgae as biodiesel & biomass feedstocks: Review and analysis of the biochemistry, energetics & economics. Energy & Environmental Science, 3, 554–590.

    Article  Google Scholar 

  • Yin, C., & Yan, J. (2016). Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling. Applied Energy, 162, 742–762.

    Article  Google Scholar 

  • Zepka, L. Q., et al. (2015). Biogeneration of volatile compounds from microalgae. Chapter: Flavour Generation, 257–260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Queiroz Zepka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aguiar Severo, I., Barin, J.S., Wagner, R., Zepka, L.Q., Jacob-Lopes, E. (2018). Biofuels from Microalgae: Photobioreactor Exhaust Gases in Oxycombustion Systems. In: Jacob-Lopes, E., Queiroz Zepka, L., Queiroz, M. (eds) Energy from Microalgae . Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-69093-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69093-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69092-6

  • Online ISBN: 978-3-319-69093-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics