Skip to main content

Biofuels from Microalgae: Biomethane

Part of the Green Energy and Technology book series (GREEN)

Abstract

The high cost of axenic microalgae cultivation in photobioreactors limits nowadays the potential uses of microalgal biomass as a feedstock for the production of biodiesel or bioethanol. In this context, microalgae-based wastewater treatment (WWT) has emerged as the leading method of cultivation for supplying microalgae at low cost and low environmental impacts, while achieving sewage treatment. Nonetheless, the year-round dynamics in microalgae population and cell composition when grown in WWTPs restrict the use of this low-quality biomass to biogas production via anaerobic digestion. Although the macromolecular composition of the microalgae produced during wastewater treatment is similar to that of sewage sludge, the recalcitrant nature of microalgae cell walls requires an optimisation of pretreatment technologies for enhancing microalgae biodegradability. In addition, the low C/N ratio, the high water content and the suspended nature of microalgae suggest that microalgal biomass will also benefit from anaerobic co-digestion with carbon-rich substrates, which constitutes a field for further research. Photosynthetic microalgae growth can also support an effective CO2 capture and H2S oxidation from biogas, which would generate a high-quality biomethane complying with most international regulations for injection into natural gas grids or use as autogas. This book chapter will critically review the most recent advances in biogas production from microalgae, with a special focus on pretreatment technologies, co-digestion opportunities, modelling strategies, biogas upgrading and process microbiology.

Keywords

  • Anaerobic co-digestion
  • Biogas upgrading
  • Microbiology
  • Modelling
  • Pretreatments

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abatzoglou, N., & Boivin, S. (2009). A review of biogas purification processes. Biofuels Bioproducts Biorefining, 3, 42–71.

    CrossRef  Google Scholar 

  • Abo-Shady, A. M., Mohamed., Y. A., & Lasheen T. (1993). Chemical composition of the cell wall in some green algae species. Biologia Plantarum, 35(4), 629–632.

    CrossRef  Google Scholar 

  • Accettola, F., Guebitz, G., & Schoeftner, R. (2008). Siloxane removal from biogas by biofiltration: Biodegradation studies. Clean Technologies and Environmental Policy, 10, 211–218.

    CrossRef  Google Scholar 

  • Alzate, M. E., Muñoz, R., Rogalla, F., Fdz-Polanco, F., & Pérez-Elvira, S. I. (2012). Biochemical methane potential of microalgae: Influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresource Technology, 123, 488–494.

    CrossRef  Google Scholar 

  • Angelidaki I., & Ahring B. K., 2000. Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Science and Technology, 41(3), 189–194.

    Google Scholar 

  • Arnell, M., Astals, S., Åmand, L., Batstone, D. J., Jensen, P. D., & Jeppsson, U. (2016). Modelling anaerobic co-digestion in Benchmark Simulation Model No. 2: Parameter estimation, substrate characterisation and plant-wide integration. Water Research, 98, 138–146.

    CrossRef  Google Scholar 

  • Astals, S., Batstone, D. J., Mata-Alvarez, J., & Jensen, P. D. (2014). Identification of synergistic impacts during anaerobic co-digestion of organic wastes. Bioresource Technology, 169, 421–427.

    CrossRef  Google Scholar 

  • Bailón, L., & Hinge, J. (2012). Report: Biogas and bio-syngas upgrading. Danish Technological Institute. http://www.teknologisk.dk/_root/media/52679_ReportBiogas%20and%20syngas%20upgrading.pdf.

  • Batstone, D. J. (2006). Mathematical modelling of anaerobic reactors treating domestic wastewater: Rational criteria for model use. Review Environment Science Bio/Technology, 5, 57–71.

    CrossRef  Google Scholar 

  • Batstone, D. J., & Keller, J. (2002). Industrial applications of the IWA anaerobic digestion. Water Science and Technology, 1, 199–206.

    Google Scholar 

  • Batstone, D. J., Puyol, D., Flores-Alsina, X., & Rodríguez, J. (2015). Mathematical modelling of anaerobic digestion processes: Applications and future needs. Rev: Environment Science Bio/Technology. https://doi.org/10.1007/s11157-015-9376-4.

    CrossRef  Google Scholar 

  • Bauer, F., Hulteberg, C., Persson, T., & Tamm, D. (2013). Biogas upgrading—Review of commercial technologies. SGC Rapport 2013:270. SGC. http://vav.griffel.net/filer/C_SGC2013-270.pdf.

  • Beltrán, C., Jeison, D., Fermoso, F. G., & Borja, R. (2016). Batch anaerobic co-digestion of waste activated sludge and microalgae (Chlorella sorokiniana) at mesophilic temperature. Journal of Environmental Science and Health—Part A, 51(10), 847–850.

    CrossRef  Google Scholar 

  • Blumreisinger, M., Meindl, D., & Loos, E. (1983). Cell wall composition of chlorococcal algae. Phytochemistry, 22(7), 1603–1604.

    CrossRef  Google Scholar 

  • Bohutskyi, P., Betenbaugh, M. J., & Bouwer, E. J. (2014). The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains. Bioresource Technology, 155, 366–372.

    CrossRef  Google Scholar 

  • Brown, M. R., Jeffrey, S. W., Volkman, J. K., & Dunstan, G. A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151, 315–331.

    CrossRef  Google Scholar 

  • Capson-Tojo, G., Torres, A., Munoz, R., Bartacek, J., & Jeison, D. (2017). Mesophilic and thermophilic anaerobic digestion of lipid-extracted microalgae N-gaditana for methane production. Renewable Energy, 105, 539–546.

    CrossRef  Google Scholar 

  • Cea-Barcia, G., Moreno, G., & Buitron, G. (2015). Anaerobic digestion of mixed microalgae cultivated in secondary effluent under mesophilic and thermophilic conditions. Water Science and Technology, 72(8), 1398–1403.

    CrossRef  Google Scholar 

  • Chen, P. H., & Oswald, W. J. (1998). Thermochemical pretreatment for algal fermentation. Environment International, 24(8), 889–897.

    CrossRef  Google Scholar 

  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.

    CrossRef  Google Scholar 

  • Díaz, I., Pérez, C., Alfaro, N., & Fdz-Polanco, F. (2015). A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes. Bioresource Technology, 185, 246–253.

    CrossRef  Google Scholar 

  • Derenne, S., Largeau, C., Berkaloff, C., Rousseau, B., Wilhelm, C., & Hatcher, P. G. (1992). Non-hydrolysable macromolecular constituents from outer walls of Chlorella fusca and Nanochlorum eucaryotum. Phytochemistry, 31(6), 1923–1929.

    CrossRef  Google Scholar 

  • Domozych, D. S., Stewart, K. D., & Mattox, K. R. (1980). The comparative aspects of cell wall chemistry in the green algae (Chlorophyta). Journal of Molecular Evolution, 15(1), 1–12, ISSN: 1432-1432.

    CrossRef  Google Scholar 

  • Donoso-Bravo, A., Mailier, J., Martin, C., Rodríguez, J., Aceves-Lara, C. A., & Vande Wouwer, A. (2011). Model selection, identification and validation in anaerobic digestion: A review. Water Research, 45, 5347–5364.

    CrossRef  Google Scholar 

  • Donoso-Bravo, A., Pérez-Elvira, S. I., & Fdz-Polanco, F. (2010). Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chemical Engineering Journal, 160, 607–614.

    CrossRef  Google Scholar 

  • Ehimen, E. A., Sun, Z. F., Carrington, C. G., Birch, E. J., & Eaton-Rye, J. J. (2011). Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Applied Energy, 88(10), 3454–3463.

    CrossRef  Google Scholar 

  • Fernandez-Rodriguez, M. J., Rincon, B., Fermoso, F. G., Jimenez, A. M., & Borja, R. (2014). Assessment of two-phase olive mill solid waste and microalgae co-digestion to improve methane production and process kinetics. Bioresource Technology, 157, 263–269.

    CrossRef  Google Scholar 

  • Gabriel, D., Deshusses, M. A., & Gamisans, X. (2013). Desulfurization of biogas in biotrickling filter. In: John Wiley & Sons (Ed.), Air pollution prevention and control: Bioreactors and bioenergy (1st ed., pp. 513–523). Wiley: Hoboken.

    CrossRef  Google Scholar 

  • Gelin, F., Boogers, I., Noordeloos, A. A. M., Damsté J. S. S., Riegman, R., & De Leeuw J. W. (1997). Resistant biomacromolecules in marine microalgae of the classes eustigmatophyceae and chlorophyceae: Geochemical implications. Organic Geochemistry, 26(11–12), 659–675.

    CrossRef  Google Scholar 

  • Giménez, J. B., Aguado, D., Bouzas, A., Ferrer, J., & Seco, A. (2017). Use of rumen microorganisms to boost the anaerobic biodegradability of microalgae. Algal Research, 24, 309–316.

    CrossRef  Google Scholar 

  • Golueke, C. G., Oswald, W. J., & Gotaas, H. B. (1957). Anaerobic digestion of Algae. Applied Microbiology, 5(1), 47–55.

    Google Scholar 

  • González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012). Impact of micro- algae characteristics on their conversion to biofuel. Part II: Focus on biomethane production. Biofuels, Bioproducts and Biorefining, 6(2), 205–218.

    CrossRef  Google Scholar 

  • Grobbelaar, J. U. (2004). Algal nutrition. In A. Richmond (Ed.), Handbook of microalgal culture: Biotechnology and applied phycology, Hoboken: Wiley-Blackwell.

    Google Scholar 

  • Herrmann, C., Kalita, N., Wall, D., Xia, A., & Murphy, J. D. (2016). Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates. Bioresource Technology, 214, 328–337.

    CrossRef  Google Scholar 

  • Hidaka, T., Takabe, Y., Tsumori, J., & Minamiyama, M. (2017). Characterization of microalgae cultivated in continuous operation combined with anaerobic co-digestion of sewage sludge and microalgae. Biomass and Bioenergy, 99, 139–146.

    CrossRef  Google Scholar 

  • IEA, Task 40 and Task 37 Joint Study. http://task40.ieabioenergy.com/wp-content/uploads/2013/09/t40-t37-biomethane-2014.pdf.

  • Jankowska, E., Sahu, A. K., & Oleskowicz-Popiel, P. (2017). Biogas from microalgae: Review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renewable and Sustainable Energy Reviews, 75, 692–709.

    CrossRef  Google Scholar 

  • Kadouri, A., Derenne, S., Largeau, C., Casadevall, E., & Berkaloff, C. (1988). Resistant biopolymer in the outer walls of Botryococcus braunii, B race. Phytochemistry, 27(2), 551–557.

    CrossRef  Google Scholar 

  • Kinnunen, V., Craggs, R., & Rintala, J. (2014). Influence of temperature and pretreatments on the anaerobic digestion of wastewater grown microalgae in a laboratory-scale accumulating volume reactor. Water Research, 57, 247–257.

    CrossRef  Google Scholar 

  • Klassen, V., Blifernez-Klassen, O., Wobbe, L., Schlüter, A., Kruse, O., & Mussgnug, J. H. (2016). Efficiency and biotechnological aspects of biogas production from microalgal substrates. Journal of Biotechnology, 234, 7–26.

    CrossRef  Google Scholar 

  • Lardon, L., Helias, A., Sialve, B., Steyer, J. P., & Bernard, O. (2009). Life-cycle assessment of biodiesel production from microalgae. Environmental Science and Technology, 43(17), 6475–6481.

    CrossRef  Google Scholar 

  • Lee, E., Cumberbatch, J., Wang, M., & Zhang, Q. (2017). Kinetic parameter estimation model for anaerobic co-digestion of waste activated sludge and microalgae. Bioresource technology, 228, 9–17.

    CrossRef  Google Scholar 

  • Loos, E., & Meindl, D. (1982). Composition of the cell wall of Chlorellafusca. Planta, 156(3), 270–273.

    Google Scholar 

  • Mahdy, A., Mendez, L., Ballesteros, M., & González-Fernández, C. (2015). Protease pretreated Chlorella vulgaris biomass conversion to methane via semi-continuous anaerobic digestion. Fuel, 158, 35–41.

    CrossRef  Google Scholar 

  • Mahdy, A., Fotidis, I. A., Mancini, E., Ballesteros, M., González-Fernández, C., & Angelidaki, I. (2017). Ammonia tolerant inocula provide a good base for anaerobic digestion of microalgae in third generation biogas process. Bioresource Technology, 225, 272–278.

    CrossRef  Google Scholar 

  • Mairet, F., Bernard, O., Cameron, E., Ras, M., Lardon, L., Steyer, J.-P., et al. (2012). Three-reaction model for the anaerobic digestion of microalgae. Biotechnology and Bioengineering, 109, 415–425.

    CrossRef  Google Scholar 

  • Mairet, F., Bernard, O., Ras, M., Lardon, L., & Steyer, J.-P. (2011). Modeling anaerobic digestion of microalgae using ADM1. Bioresource Technology, 102, 6823–6829.

    CrossRef  Google Scholar 

  • Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.

    CrossRef  Google Scholar 

  • Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427.

    CrossRef  Google Scholar 

  • Meier, L., Pérez, R., Azócar, L., Rivas, M., & Jeison, D. (2015). Photosynthetic CO2 uptake by microalgae: An attractive tool for biogas upgrading. Biomass and Bioenergy, 73, 102–109.

    CrossRef  Google Scholar 

  • Montingelli, M. E., Tedesco, S., & Olabi, A. G. (2015). Biogas production from algal biomass: A review. Renewable and Sustainable Energy Reviews, 43, 961–972.

    CrossRef  Google Scholar 

  • Muñoz, R., Meier, L., Diaz, I., & Jeison, D. (2015). A critical review on the state-of-the-art of physical/chemical and biological technologies for an integral biogas upgrading. Reviews in Environmental Science and Biotechnology, 14, 727–759.

    CrossRef  Google Scholar 

  • Neumann, P., Torres, A., Fermoso, F. G., Borja, R., & Jeison, D. (2015). Anaerobic co-digestion of lipid-spent microalgae with waste activated sludge and glycerol in batch mode. International Biodeterioration and Biodegradation, 100, 85–88.

    CrossRef  Google Scholar 

  • Okuda, K. (2002). Structure and phylogeny of cell coverings. Journal of Plant Research, 115, 283–288.

    CrossRef  Google Scholar 

  • Ometto, F., Quiroga, G., Psenicka, P., Whitton, R., Jefferson, B., & Villa, R. (2014). Impacts of microalgae pre-treatments for improved anaerobic digestion: Thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Research, 65, 350–361.

    CrossRef  Google Scholar 

  • Park, J. B. K., Craggs, R. J., & Shilton, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102(1), 35–42.

    CrossRef  Google Scholar 

  • Park, S., & Li, Y. (2012). Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresource Technology, 111, 42–48.

    CrossRef  Google Scholar 

  • Passos, F., Uggetti, E., Carrère, H., & Ferrer, I. (2014a). Pretreatment of microalgae to improve biogas production: A review. Bioresource Technology, 172, 403–412.

    CrossRef  Google Scholar 

  • Passos, F., Hernández-Mariné, M., García, J., & Ferrer, I. (2014b). Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Research, 49, 351–359.

    CrossRef  Google Scholar 

  • Passos, F., & Ferrer, I. (2014). Microalgae conversion to biogas: Thermal pretreatment contribution on net energy production. Environmental Science and Technology, 48(12), 7171–7178.

    CrossRef  Google Scholar 

  • Passos, F., Gutiérrez, R., Brockmann, D., Steyer, J. P., García, J., & Ferrer, I. (2015). Microalgae production in wastewater treatment systems, anaerobic digestion and modelling using ADM1. Algal Research, 10, 55–63.

    CrossRef  Google Scholar 

  • Passos, F., & Ferrer, I. (2015). Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production. Water Research, 68, 364–373.

    CrossRef  Google Scholar 

  • Peng, S., & Colosi, L. M. (2016). Anaerobic digestion of algae biomass to produce energy during wastewater treatment. Water Environment Research, 88(1), 29–39.

    CrossRef  Google Scholar 

  • Rajagopal, R., Massé, D.I., Singh, G. 2013. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, 143, 632–641. https://www.sciencedirect.com/science/article/pii/S0960852413009498

  • Rizwan, M., Lee, J. H., & Gani, R. (2015). Optimal design of microalgae-based biorefinery: Economics, opportunities and challenges. Applied Energy, 150, 69–79.

    CrossRef  Google Scholar 

  • Rodriguez, C., Alaswad, A., Mooney, J., Prescott, T., & Olabi, A. G. (2015). Pre-treatment techniques used for anaerobic digestion of algae. Fuel Processing Technology, 138, 765–779.

    CrossRef  Google Scholar 

  • Rusten, B., & Sahu, A. K. (2011). Microalgae growth for nutrient recovery from sludge liquor and production of renewable bioenergy. Water Science and Technology, 64, 1195–1201.

    CrossRef  Google Scholar 

  • Sahu, A. K., Siljudalen, J., Trydal, T., & Rusten, B. (2013). Utilisation of wastewater nutrients for microalgae growth for anaerobic co-digestion. Journal of Environmental Management, 122, 113–120.

    CrossRef  Google Scholar 

  • Sanz, J. L., Rojas, P., Morato, A., Mendez, L., Ballesteros, M., & González-Fernández, C. (2017). Microbial communities of biomethanization digesters fed with raw and heat pre-treated microalgae biomasses. Chemosphere, 168, 1013–1021.

    CrossRef  Google Scholar 

  • Schwede, S., Kowalczyk, A., Gerber, M., & Span, R. (2013). Anaerobic co-digestion of the marine microalga Nannochloropsis salina with energy crops. Bioresource Technology, 148, 428–435.

    CrossRef  Google Scholar 

  • Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J., et al. (2010). Biodiesel from algae: Challenges and prospects. Current Opinion in Biotechnology, 21(3), 277–286.

    CrossRef  Google Scholar 

  • Sialve, B., Bernet, N., & Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27(4), 409–416.

    CrossRef  Google Scholar 

  • Simpson, A. J., Zang, X., Kramer, R., & Hatcher, P. G. (2003). New insights on the structure of algaenan from Botryoccocus braunii race A and its hexane insoluble botryals based on multidimensional NMR spectroscopy and electrospray-mass spectrometry techniques. Phytochemistry, 62(5), 96–783.

    CrossRef  Google Scholar 

  • Solé-Bundó, M., Carrère, H., Garfí, M., & Ferrer, I. (2017). Enhancement of microalgae anaerobic digestion by thermo-alkaline pretreatment with lime (CaO). Algal Research, 24, 199–206.

    CrossRef  Google Scholar 

  • Stephens, E., Ross, I. L., King, Z., Mussgnug, J. H., Kruse, O., Posten, C., et al. (2010). An economic and technical evaluation of microalgal biofuels. Nature Biotechnology, 28(2), 126–128.

    CrossRef  Google Scholar 

  • Tartakovsky, B., Lebrun, F. M., & Guiot, S. R. (2015). High-rate biomethane production from microalgal biomass in a UASB reactor. Algal Research-Biomass Biofuels and Bioproducts, 7, 86–91.

    Google Scholar 

  • Thrän, D., Persson, T., Daniel-Gromke, J., Ponitka, J., Seiffert, M., Boldwin, D., & et al. (2014). Biomethane—status and factors affecting market development and trade. IEA.

    Google Scholar 

  • Toledo-Cervantes, A., Estrada, J. M., Lebrero, R., & Muñoz, R. (2017). A comparative analysis of biogas upgrading technologies: Photosynthetic versus physical/chemical processes. Algal Research, 25, 237–243.

    CrossRef  Google Scholar 

  • Tomei, M. C., Braguglia, C. M., Cento, G., & Mininni, G. (2009). Modeling of anaerobic digestion of sludge. Critical Reviews in Environment Science and Technology, 39, 1003–1051.

    CrossRef  Google Scholar 

  • Torres, A., Fermoso, F.G., Rincón, B., Bartacek, J., Borja, R., & Jeison, D. (2013). Challenges for cost-effective microalgae anaerobic digestion. In R. Chamy & F. Rosenkranz (Eds.) Biodegradation—Engineering and Technology. Intech: Croatia.

    Google Scholar 

  • Wang, M., Lee, E., Zhang, Q., & Ergas, S. J. (2016a). Anaerobic co-digestion of swine manure and microalgae chlorella sp.: Experimental studies and energy analysis. Bioenergy Research, 9(4), 1204–1215.

    CrossRef  Google Scholar 

  • Wang, M., Lee, E., Dilbeck, M.P., Liebelt, M., & Zhang, Q., Ergas, S. J. (2016b). Thermal pretreatment of microalgae for biomethane production: Experimental studies, kinetics and energy analysis. Journal of Chemical Technology and Biotechnology. https://doi.org/10.1002/jctb.5018.

  • Ward, A. J., Lewis, D. M., & Green, B. (2014). Anaerobic digestion of algae biomass: A review. Algal Research-Biomass Biofuels and Bioproducts, 5, 204–214.

    Google Scholar 

  • Weyer, K. M., Bush, D. R., Darzins, A., & Willson, B. D. (2010). Theoretical maximum algal oil production. Bioenergy Research, 3(2), 204–213.

    CrossRef  Google Scholar 

  • Yen, H. W., & Brune, D. E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology, 98(1), 130–134.

    CrossRef  Google Scholar 

  • Yuan, X., Wang, M., Park, C., Sahu, A. K., & Ergas, S. J. (2012). Microalgae growth using high-strength wastewater followed by anaerobic co-digestion. Water Environment Research, 84(5), 396–404.

    CrossRef  Google Scholar 

  • Zamalloa, C., Boon, N., & Verstraete, W. (2012a). Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Applied Energy, 92, 733–738.

    CrossRef  Google Scholar 

  • Zamalloa, C., De Vrieze, J., Boon, N., & Verstraete, W. (2012b). Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor. Applied Microbiology and Biotechnology, 93(2), 859–869.

    CrossRef  Google Scholar 

  • Zhen, G., Lu, X., Kobayashi, T., Kumar, G., & Xu, K. (2016). Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp.) and food waste: Kinetic modeling and synergistic impact evaluation. Chemical Engineering Journal, 299, 332–341.

    CrossRef  Google Scholar 

  • Zhong, W., Chi, L., Luo, Y., Zhang, Z., Zhang, Z., & Wu, W. M. (2013). Enhanced methane production from Taihu Lake blue algae by anaerobic co-digestion with corn straw in continuous feed digesters. Bioresource Technology, 134, 264–270.

    CrossRef  Google Scholar 

Download references

Acknowledgements

The financial support from MINECO and the FEDER funding programme is gratefully acknowledged (CTM2015-70442-R). The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 689242. David Jeison acknowledges the support provided by CRHIAM Centre (CONICYT/FONDAP/15130015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Passos, F., Mota, C., Donoso-Bravo, A., Astals, S., Jeison, D., Muñoz, R. (2018). Biofuels from Microalgae: Biomethane. In: Jacob-Lopes, E., Queiroz Zepka, L., Queiroz, M. (eds) Energy from Microalgae . Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-69093-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69093-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69092-6

  • Online ISBN: 978-3-319-69093-3

  • eBook Packages: EnergyEnergy (R0)