Biofuels from Microalgae: Biohydrogen

Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Rapid industrialization and urbanization are mainly responsible for the energy crisis, environmental pollution and climate change. In addition, depletion of the fossil fuels is a major concern now. To confront these problems, it is essential to produce energy from sustainable and renewable energy sources. Hydrogen is widely considered as a clean and efficient energy carrier for the future because it does not produce carbon-based emission and has the highest energy density among any other known fuels. Due to the environmental and socioeconomic limitation associated with conventional processes for the hydrogen production, new approaches of producing hydrogen from biological sources have been greatly encouraged. From the perspective of sustainability, microalgae offer a promising source and have several advantages for the biohydrogen production. Microalgae are characterized as high rate of cell growth with superior photosynthetic efficiency and can be grown in brackish or wastewater on non-arable land. In recent years, biohydrogen production from microalgae via photolysis or being used as substrate in dark fermentation is gaining considerable interest. The present chapter describes the different methods involved in hydrogen production from microalgae. Suitability of the microalgae as a feedstock for the dark fermentation is discussed. This review also includes the challenges faced in hydrogen production from microalgae as well as the genetic and metabolic engineering approaches for the enhancement of biohydrogen production.

Keywords

Microalgae Biohydrogen Photolysis Dark fermentation Genetic engineering 

References

  1. Almon, H., & Bӧger, P. 1988. Nitrogen and hydrogen metabolism: induction and measurement. Methods in Enzymology, Academic Press, 167.Google Scholar
  2. Baebprasert, W., Lindblad, P., & Incharoensakdi, A. (2010). Response of H2 production and Hox-hydrogenase activity to external factors in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. International Journal of Hydrogen Energy, 35(13), 6611–6616.CrossRefGoogle Scholar
  3. Batista, A. P., Moura, P., Marques, P. A. S. S., Ortigueira, J., Alves, L., & Gouveia, L. (2014). Scenedesmus obliquus as feedstock for biohydrogen production by Enterobacter aerogenes and Clostridium butyricum. Fuel, 117, 537–543.CrossRefGoogle Scholar
  4. Benemann, J. R. (2000). Hydrogen production by microalgae. Journal of Applied Phycology, 12, 291–300.CrossRefGoogle Scholar
  5. Bernát, G., Waschewski, N., & Rögner, M. (2009). Towards efficient hydrogen production: The impact of antenna size and external factors on electron transport dynamics in Synechocystis PCC 6803. Photosynthesis Research, 99(3), 205–216.CrossRefGoogle Scholar
  6. Borodin, V. B., Tsygankov, A. A., Rao, K. K., & Hall, D. O. (2000). Hydrogen production by Anabaena variabilis PK84 under simulated outdoor conditions. Biotechnology and Bioengineering, 69(5), 478–485.CrossRefGoogle Scholar
  7. Burrows, E. H., Chaplen, F. W. R., & Ely, R. L. (2008). Optimization of media nutrient composition for increased photofermentative hydrogen production by Synechocystis sp. PCC 6803. International Journal of Hydrogen Energy, 33(21), 6092–6099.CrossRefGoogle Scholar
  8. Chen, C. Y., Zhao, X. Q., Yen, H. W., Ho, S. H., Cheng, C. L., Lee, D. J., et al. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1–10.CrossRefGoogle Scholar
  9. Cheng, J., Liu, Y., Lin, R., Xia, A., Zhou, J., & Cen, K. (2014). Cogeneration of hydrogen and methane from the pretreated biomass of algae bloom in Taihu Lake. International Journal of Hydrogen Energy, 39(33), 18793–18802.CrossRefGoogle Scholar
  10. Cheng, J., Xia, A., Liu, Y., Lin, R., Zhou, J., & Cen, K. (2012). Combination of dark- and photo-fermentation to improve hydrogen production from Arthrospira platensis wet biomass with ammonium removal by zeolite. International Journal of Hydrogen Energy, 37(18), 13330–13337.CrossRefGoogle Scholar
  11. Das, D., & Veziroğlu, T. N. (2001). Hydrogen production by biological proceses: A survey of literature. International Journal of Hydrogen Energy, 26, 13–28.CrossRefGoogle Scholar
  12. Das, D., Khanna, N., & Dasgupta, C. N. (2014). Biohydrogen production: Fundamentals and technology advances. CRC Press, Taylor and Francis Group, LLC.CrossRefGoogle Scholar
  13. Doebbe, A., Rupprecht, J., Beckmann, J., Mussgnug, J. H., Hallmann, A., Hankamer, B., et al. (2007). Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production. Journal of Biotechnology, 131(1), 27–33.CrossRefGoogle Scholar
  14. Eroglu, E., & Melis, A. (2011). Photobiological hydrogen production: Recent advances and state of the art. Bioresource Technology, 102(18), 8403–8413.CrossRefGoogle Scholar
  15. Fernández-Sevilla, J. M., Acién-Fernández, F. G., & Molina-Grima, E. (2014). Microbial bioenergy: Hydrogen production. Advances in Photosynthesis and Respiration, 38, 291–320.CrossRefGoogle Scholar
  16. Forestier, M., King, P., Zhang, L., Posewitz, M., Schwarzer, S., Happe, T., et al. (2003). Expression of two [Fe] -hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. European Journal of Biochemistry, 270, 2750–2758.CrossRefGoogle Scholar
  17. Gaffron, H., & Rubin, J. (1942). Fermentatinve and photochemical production of hydrogen in algae. The Journal of General Physiology, 26(2), 219–240.CrossRefGoogle Scholar
  18. Genkov, T., Meyer, M., Griffiths, H., & Spreitzer, R. J. (2010). Functional hybrid rubisco enzymes with plant small subunits and algal large subunits: Engineered rbcS cDNA for expression in Chlamydomonas. Journal of Biological Chemistry, 285(26), 19833–19841.CrossRefGoogle Scholar
  19. Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P. N. L., et al. (2015). A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy, 144, 73–95.CrossRefGoogle Scholar
  20. Ghirardi, M. L., Togasaki, R. K., & Seibert, M. (1997). Oxygen sensitivity of Algal H2-production. Applied Biochemistry and Biotechnology, 63–65, 141–151.CrossRefGoogle Scholar
  21. Ghirardi, M. L., Zhang, L., Lee, J. W., Flynn, T., Seibert, M., Greenbaum, E., et al. (2000). Microalgae: A green source of renewable H2. Trends in Biotechnology, 18(12), 506–511.CrossRefGoogle Scholar
  22. Ghosh, S., Roy, S., & Das, D. (2017). Enhancement in lipid content of Chlorella sp. MJ11/11 from the spent medium of thermophilic biohydrogen production process. Bioresource Technology, 223, 219–226.CrossRefGoogle Scholar
  23. Greenbaum, E. (1982). Photosynthetic hydrogen and oxygen production: Kinetic studies. Science (New York), 215(4530), 291–293.CrossRefGoogle Scholar
  24. Happe, T., Hemschemeier, A., Winkler, M., & Kaminski, A. (2002). Hydrogenases in green algae: Do they save the algae’s life and solve our energy problems? Trends in Plant Science, 7(6), 246–250.CrossRefGoogle Scholar
  25. Happe, T., Schütz, K., & Böhme, H. (2000). Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Journal of Bacteriology, 182(6), 1624–1631.CrossRefGoogle Scholar
  26. Harun, R., Yip, J. W. S., Thiruvenkadam, S., Ghani, W. A. W. A. K., Cherrington, T., & Danquah, M. K. (2014). Algal biomass conversion to bioethanol-a step-by-step assessment. Biotechnology Journal, 9(1), 73–86.CrossRefGoogle Scholar
  27. Hernández, D., Riaño, B., Coca, M., & García-González, M. C. (2015). Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chemical Engineering Journal, 262, 939–945.CrossRefGoogle Scholar
  28. Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 244–252.CrossRefGoogle Scholar
  29. Ho, S. H., Huang, S. W., Chen, C. Y., Hasunuma, T., Kondo, A., & Chang, J. S. (2013). Bioethanol production using carbohydrate rich micraolgae biomass as feedstock. Bioresource Technology, 135, 191–198.CrossRefGoogle Scholar
  30. Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139(4), 244–260.CrossRefGoogle Scholar
  31. Hom-Diaz, A., Passos, F., Ferrer, I., Vicent, T., & Blánquez, P. (2016). Enzymatic pretreatment of microalgae using fungal broth from Trametes versicolor and commercial laccase for improved biogas production. Algal Research, 19, 184–188.CrossRefGoogle Scholar
  32. Khan, M. I., Lee, M. G., Shin, J. H., & Kim, J. D. (2017). Pretreatment optimization of the biomass of Microcystis aeruginosa for efficient bioethanol production. AMB Expr, 7(19), 1–9.Google Scholar
  33. Khetkorn, W., Lindblad, P., & Incharoensakdi, A. (2012). Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012. Journal of Biological Engineering, 6(19), 1–11.Google Scholar
  34. Kim, D.-H., & Kim, M.-S. (2011). Hydrogenases for biological hydrogen production. Bioresource Technology, 102(18), 8423–8431.CrossRefGoogle Scholar
  35. Kosourov, S., Makarova, V., Fedorov, A. S., Tsygankov, A., Seibert, M., & Ghirardi, M. L. (2005). The effect of sulfur re-addition on H2 photoproduction by sulfur-deprived green algae. Photosynthesis Research, 85, 295–305.CrossRefGoogle Scholar
  36. Kosourov, S., Tsygankov, A., Seibert, M., & Ghirardi, M. L. (2002). Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters. Biotechnology and Bioengineering, 78(7), 731–740.CrossRefGoogle Scholar
  37. Kosourov, S. N., Ghirardi, M. L., & Seibert, M. (2011). A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. International Journal of Hydrogen Energy, 36(3), 2044–2048.CrossRefGoogle Scholar
  38. Kumar, K., Roy, S., & Das, D. (2013). Continuous mode of carbon dioxide sequestration by C. sorokiniana and subsequent use of its biomass for hydrogen production by E. cloacae IIT-BT 08. Bioresource Technology, 145, 116–122.CrossRefGoogle Scholar
  39. Lakaniemi, A. M., Hulatt, C. J., Thomas, D. N., Tuovinen, O. H., & Puhakka, J. A. (2011). Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnology for Biofuels, 4(1), 34.CrossRefGoogle Scholar
  40. Laurinavichene, T. V., Fedorov, A. S., Ghirardi, M. L., Seibert, M., & Tsygankov, A. A. (2006). Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells. International Journal of Hydrogen Energy, 31(5), 659–667.CrossRefGoogle Scholar
  41. Lay, C. H., Sen, B., Chen, C. C., Wu, J. H., Lee, S. C., & Lin, C. Y. (2013). Co-fermentation of water hyacinth and beverage wastewater in powder and pellet form for hydrogen production. Bioresource Technology, 135, 610–615.CrossRefGoogle Scholar
  42. Levin, D. B., Pitt, L., & Love, M. (2004). Biohydrogen production: Prospects and limitations to practical application. International Journal of Hydrogen Energy, 29(2), 173–185.CrossRefGoogle Scholar
  43. Lindblad, P., Christensson, K., Lindberg, P., Fedorov, A., Pinto, F., & Tsygankov, A. (2002). Photoproduction of H2 by wildtype Anabaena PCC 7120 and a hydrogen uptake deficient mutant: From laboratory experiments to outdoor culture. International Journal of Hydrogen, 27, 1271–1281.CrossRefGoogle Scholar
  44. Liu, C. H., Chang, C. Y., Cheng, C. L., Lee, D. J., & Chang, J. S. (2012). Fermentative hydrogen production by Clostridium butyricum CGS5 using carbohydrate-rich microalgal biomass as feedstock. International Journal of Hydrogen Energy, 37(20), 15458–15464.CrossRefGoogle Scholar
  45. Márquez-Reyes, L. A., Sánchez-Saavedra, M. D. P., & Valdez-Vazquez, I. (2015). Improvement of hydrogen production by reduction of the photosynthetic oxygen in microalgae cultures of Chlamydomonas gloeopara and Scenedesmus obliquus. International Journal of Hydrogen Energy, 40(23), 7291–7300.CrossRefGoogle Scholar
  46. Markou, G., Angelidaki, I., & Georgakakis, D. (2012a). Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology, 96(3), 631–645.CrossRefGoogle Scholar
  47. Markou, G., Chatzipavlidis, I., & Georgakakis, D. (2012b). Cultivation of Arthrospira (Spirulina) platensis in olive-oil mill wastewater treated with sodium hypochlorite. Bioresource Technology, 112, 234–241.CrossRefGoogle Scholar
  48. Masukawa, H., Mochimaru, M., & Sakurai, H. (2002). Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Applied Microbiology and Biotechnology, 58(5), 618–624.CrossRefGoogle Scholar
  49. McKinlay, J. B., & Harwood, C. S. (2010). Photobiological production of hydrogen gas as a biofuel. Current Opinion in Biotechnology, 21(3), 244–251.CrossRefGoogle Scholar
  50. Melis, A., Zhang, L., Forestier, M., Ghirardi, M. L., & Seibert, M. (2000). Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green Alga Chlamydomonas reinhardtii. Plant Physiology, 122, 127–135.CrossRefGoogle Scholar
  51. Mikheeva, L. E., Schmitz, O., Shestakov, S. V., & Bothe, H. (1995). Mutants of the cyanobacterium Anabaena variabilis altered in hydrogenase activities. Z. Natutforsch, 50, 505–510.Google Scholar
  52. Miranda, J. R., Passarinho, P. C., & Gouveia, L. (2012). Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource Technology, 104, 342–348.CrossRefGoogle Scholar
  53. Miura, Y., Akano, T., Fukatsu, K., Miyasaka, H., Mizoguchi, T., Yagi, K., et al. (1997). Stably sustained hydrogen production by biophotolysis in natural day/night cycle. Energy Conservation Management, 38, 533–537.CrossRefGoogle Scholar
  54. Monlau, F., Sambusiti, C., Barakat, A., Quéméneur, M., Trably, E., Steyer, J. P., et al. (2014). Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnology Advances, 32(5), 934–951.CrossRefGoogle Scholar
  55. Montingelli, M. E., Tedesco, S., & Olabi, A. G. (2015). Biogas production from algal biomass: A review. Renewable and Sustainable Energy Reviews, 43, 961–972.CrossRefGoogle Scholar
  56. Mussgnug, J. H., Klassen, V., Schlüter, A., & Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150(1), 51–56.CrossRefGoogle Scholar
  57. Mussgnug, J. H., Thomas-Hall, S., Rupprecht, J., Foo, A., Klassen, V., & McDowall, A., et al. (2007). Engineering photosynthetic light capture: Impacts on improved solar energy to biomass conversion. Plant Biotechnology Journal, 5(6), 802–814.CrossRefGoogle Scholar
  58. Nayak, B. K., Roy, S., & Das, D. (2014). Biohydrogen production from algal biomass (Anabaena sp. PCC 7120) cultivated in airlift photobioreactor. International Journal of Hydrogen Energy, 39, 7553–7560.CrossRefGoogle Scholar
  59. Nguyen, T. A. D., Kim, K. R., Nguyen, M. T., Kim, M. S., Kim, D., & Sim, S. J. (2010). Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods. International Journal of Hydrogen Energy, 35(23), 13035–13040.CrossRefGoogle Scholar
  60. Nobre, B. P., Villalobos, F., Barragán, B. E., Oliveira, A. C., Batista, A. P., Marques, P. A. S. S., et al. (2013). A biorefinary from Nannchloropsis sp. microalga - Extraction of oils and pigments. Production of biohydrogen from the leftcover biomass. Bioresource Tecnology, 135, 128–136.CrossRefGoogle Scholar
  61. Nyberg, M., Heidorn, T., & Lindblad, P. (2015). Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 δhupW examined in a flat panel photobioreactor system. Journal of Biotechnology, 215, 35–43.CrossRefGoogle Scholar
  62. Ortigueira, J., Alves, L., Gouveia, L., & Moura, P. (2015). Third generation biohydrogen production by Clostridium butyricum and adapted mixed cultures from Scenedesmus obliquus microalga biomass. Fuel, 153, 128–134.CrossRefGoogle Scholar
  63. Oey, M., Sawyer, A. L., Ross, I. L., & Hankamer, B. (2016). Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnology Journal, 14(7), 1487–1499.CrossRefGoogle Scholar
  64. Vignais, P. M., & Colbeau, A. (2004). Molecular biology of microbial hydrogenases. Current Issues in Molecular Biology, 6, 159–188.Google Scholar
  65. Pancha, I., Chokshi, K., & Mishra, S. (2015). Enhanced biofuel production potential with nutritional stress amelioration through optimization of carbon source and light intensity in Scenedesmus sp. CCNM 1077. Bioresource Technology, 179, 565–572.CrossRefGoogle Scholar
  66. Patel, V. K., Maji, D., Pandey, S. S., Rout, P. K., Sundaram, S., & Kalra, A. (2016). Rapid budding EMS mutants of Synechocystis PCC 6803 producing carbohydrate or lipid enriched biomass. Algal Research, 16, 36–45.CrossRefGoogle Scholar
  67. Peters, J. W., Lanzilotta, W. N., Lemon, B. J., & Seefeldt, L. C. (1998). X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom resolution. Science (New York), 282(5395), 1853–1858.CrossRefGoogle Scholar
  68. Peters, J. W., Schut, G. J., Boyd, E. S., Mulder, D. W., Shepard, E. M., Broderick, J. B., et al. (2015). [FeFe] - and [NiFe] -hydrogenase diversity, mechanism, and maturation. Biochimica et Biophysica Acta, 1853, 1350–1369.CrossRefGoogle Scholar
  69. Polle, J. E. W., Kanakagiri, S., Jin, E., Masuda, T., & Melis, A. (2002). Truncated chlorophyll antenna size of the photosystems—A practical method to improve microalgal productivity and hydrogen production in mass culture. International Journal of Hydrogen Energy, 27(11–12), 1257–1264.CrossRefGoogle Scholar
  70. Prajapati, S. K., Bhattacharya, A., Malik, A., & Vijay, V. K. (2015). Pretreatment of algal biomass using fungal crude enzymes. Algal Research, 8, 8–14.CrossRefGoogle Scholar
  71. Radakovits, R., Jinkerson, R. E., Darzins, A., & Posewitz, M. C. (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell, 9(4), 486–501.CrossRefGoogle Scholar
  72. Randt, C., & Senger, H. (1985). Participation of the two photosystems in light dependent hydrogen evolution in Scenedesmus obliquus. Photochemistry and Photobiology, 42(5), 553–557.CrossRefGoogle Scholar
  73. Rismani-Yazdi, H., Haznedaroglu, B. Z., Bibby, K., & Peccia, J. (2011). Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels. BMC Genomics, 12(1), 148.CrossRefGoogle Scholar
  74. Roy, S., Kumar, K., Ghosh, S., & Das, D. (2014). Thermophilic biohydrogen production using pre-treated algal biomass as substrate. Biomass and Bioenergy, 61, 157–166.CrossRefGoogle Scholar
  75. Sambusiti, C., Bellucci, M., Zabaniotou, A., Beneduce, L., & Monlau, F. (2015). Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: A comprehensive review. Renewable and Sustainable Energy Reviews, 44, 20–36.CrossRefGoogle Scholar
  76. Shi, X. Y., & Yu, H. Q. (2016). Simultaneous metabolism of benzoate and photobiological hydrogen production by Lyngbya sp. Renewable Energy, 95, 474–477.CrossRefGoogle Scholar
  77. Stripp, S. T., Goldet, G., Brandmayr, C., Sanganas, O., Vincent, K. A., Haumann, M., et al. (2009). How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17331–17336.CrossRefGoogle Scholar
  78. Su, H. Y., Lee, T. M., Huang, Y. L., Chou, S. H., Wang, J. B., Lin, L. F., et al. (2011). Increased cellulose production by heterologous expression of cellulose synthase genes in a filamentous heterocystous cyanobacterium with a modification in photosynthesis performance and growth ability. Botanical Studies, 52, 265–275.Google Scholar
  79. Taikhao, S., Junyapoon, S., Incharoensakdi, A., & Phunpruch, S. (2013). Factors affecting biohydrogen production by unicellular halotolerant cyanobacterium Aphanothece halophytica. Journal of Applied Phycology, 25(2), 575–585.CrossRefGoogle Scholar
  80. Tamagnini, P., Axelsson, R., Lindberg, P., Oxelfelt, F., Wünschiers, R., & Lindblad, P. (2002). Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiology and Molecular Biology Reviews, 66(1), 1–20.CrossRefGoogle Scholar
  81. Tiwari, A., & Pandey, A. (2012). Cyanobacterial hydrogen production—A step towards clean environment. International Journal of Hydrogen Energy, 37(1), 139–150.CrossRefGoogle Scholar
  82. Torzillo, G., Scoma, A., Faraloni, C., Ena, A., & Johanningmeier, U. (2009). Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant. International Journal of Hydrogen Energy, 34(10), 4529–4536.CrossRefGoogle Scholar
  83. Torzillo, G., Scoma, A., Faraloni, C., & Giannelli, L. (2015). Advances in biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii. Critical reviews in Biotecnology, 35(4), 485–496.CrossRefGoogle Scholar
  84. Torzillo, G., & Seibert, M. 2013. Hydrogen production by Chlamydomonas reinhardtii. In Handbook of microalgal culture: Applied phycology and biotechnology, pp. 417–432.CrossRefGoogle Scholar
  85. Troshina, O., Serebryakova, L., Sheremetieva, M., & Lindblad, P. (2002). Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. International Journal of Hydrogen Energy, 27(11–12), 1283–1289.CrossRefGoogle Scholar
  86. Tsygankov, A. A., Fedorov, A. S., Kosourov, S. N., & Rao, K. K. (2002). Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnology and Bioengineering, 80(7), 777–783.CrossRefGoogle Scholar
  87. Tsygankov, A. A., Kosourov, S. N., Tolstygina, I. V., Ghirardi, M. L., & Seibert, M. (2006). Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. International Journal of Hydrogen Energy, 31, 1574–1584.CrossRefGoogle Scholar
  88. Vitova, M., Bisova, K., Kawano, S., & Zachleder, V. (2015). Accumulation of energy reserves in algae: From cell cycles to biotechnological applications. Biotechnology Advances, 33(6), 1204–1218.CrossRefGoogle Scholar
  89. Wang, J., & Yin, Y. (2017). Bihydrogen production from organic wastes. In Green energy and technology (pp. 123–195), Springer Nature.Google Scholar
  90. Wang, Y., Ho, S.-H., Yen, H.-W., Nagarajan, D., Ren, N.-Q., & Li, S. et al. (2017). Current advances on fermantative biobutanol production using third generation feedstock. Biotechnology Advances.  https://doi.org/10.1016/j.biotechadv.2017.06.001.
  91. Wu, S., Huang, R., Xu, L., Yan, G., & Wang, Q. (2010). Improved hydrogen production with expression of hemH and lba genes in chloroplast of Chlamydomonas reinhardtii. Journal of Biotechnology, 146, 120–125.CrossRefGoogle Scholar
  92. Xia, A., Cheng, J., Ding, L., Lin, R., Song, W., Zhou, J., et al. (2014). Enhancement of energy production efficiency from mixed biomass of Chlorella pyrenoidosa and cassava starch through combined hydrogen fermentation and methanogenesis. Applied Energy, 120, 23–30.CrossRefGoogle Scholar
  93. Xia, A., Cheng, J., Lin, R., Lu, H., Zhou, J., & Cen, K. (2013). Comparison in dark hydrogen fermentation followed by photo hydrogen fermentation and methanogenesis between protein and carbohydrate compositions in Nannochloropsis oceanica biomass. Bioresource Technology, 138, 204–213.CrossRefGoogle Scholar
  94. Xia, A., Cheng, J., Song, W., Su, H., Ding, L., Lin, R., et al. (2015). Fermentative hydrogen production using algal biomass as feedstock. Renewable and Sustainable Energy Reviews, 51, 209–230.CrossRefGoogle Scholar
  95. Xu, Q., Yooseph, S., Smith, H.O., Venter, C.J. 2005. Development of a novel recombinant cyanobacterial system for hydrogen production from water. Paper presented at Genomics: GTL Program Projects, Rockville.Google Scholar
  96. Yang, Z., Guo, R., Xu, X., Fan, X., & Li, X. (2010). Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. International Journal of Hydrogen Energy, 35, 9618–9623.CrossRefGoogle Scholar
  97. Yu, J., & Takahashi, P. (2007). Biophotolysis-based hydrogen production by cyanobacteria and green microalgae. Trends in Applied Microbiology, 1, 79–89.Google Scholar
  98. Zhu, X.-G., Long, S. P., & Ort, D. R. (2010). Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 61(1), 235–261.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Advance Technology Development CenterIndian Institute of TechnologyKharagpurIndia
  2. 2.Department of BiotechnologyIndian Institute of TechnologyKharagpurIndia

Personalised recommendations