Discussion of Results

  • Cheryl E. Patrick
Part of the Springer Theses book series (Springer Theses)


As explained in chapter 2, the nucleus is a complex environment, and the interactions between nucleons affect neutrino-nucleus scattering distributions. Several different theories attempt to explain the effects. The NuWro event generator [10] includes several of these models; the details of their implementations are described in [9]. All of the effects are described in chapter 2; this section includes a summary of the models available and how they can be combined. We will then compare the predictions of the different models to our cross section measurement.


  1. 1.
    A.A. Aguilar-Arevalo et al., Neutrino flux prediction at MiniBooNE. Phys. Rev. D 79, 072002 (2009)Google Scholar
  2. 2.
    A.A. Aguilar-Arevalo et al., First measurement of the muon neutrino charged current quasielastic double differential cross section. Phys. Rev. D 81, 092005 (2010)Google Scholar
  3. 3.
    A.A. Aguilar-Arevalo et al., First measurement of the muon antineutrino double-differential charged-current quasielastic cross section. Phys. Rev. D 88, 032001 (2013)Google Scholar
  4. 4.
    L. Aliaga Soplin, Neutrino Flux Prediction for the NuMI Beamline, Ph.D. thesis, William-Mary Coll, 2016Google Scholar
  5. 5.
    C. Andreopoulos et al., The GENIE neutrino Monte Carlo generator. Nuclear Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 614(1), 87–104 (2010)Google Scholar
  6. 6.
    A. Bodek, J.L. Ritchie, Fermi-motion effects in deep-inelastic lepton scattering from nuclear targets. Phys. Rev. D 23, 1070–1091 (1981)Google Scholar
  7. 7.
    L. Fields et al., Measurement of Muon Antineutrino Quasielastic Scattering on a Hydrocarbon Target at E ν ∼ 3.5 GeV. Phys. Rev. Lett. 111(2), 022501 (2013)Google Scholar
  8. 8.
    L. Fields, K. McFarland, C. Patrick, Approved Results PRL CCQE Flux Update (2013). Available at
  9. 9.
    T. Golan, Modeling nuclear effects in NuWro Monte Carlo neutrino event generator, Ph.D. thesis, University of Wroclaw, 2014Google Scholar
  10. 10.
    T. Golan, J.T. Sobczyk, J. Zmuda, NuWro: the Wroclaw Monte Carlo generator of neutrino interactions. Nucl. Phys. Proc. Suppl. 229–232, 499 (2012)Google Scholar
  11. 11.
    L.C. Liu, Pauli blocking and final-state interaction in electron-nucleus quasielastic scattering. Phys. Rev. C 79, 014605 (2009)Google Scholar
  12. 12.
    C.H. Llewellyn Smith, Neutrino reactions at accelerator energies. Phys. Rep. 3(5), 261–379 (1972)Google Scholar
  13. 13.
    V Lyubushkin et al., A study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment. Eur. Phys. J. C63, 355–381 (2009)Google Scholar
  14. 14.
    M. Martini, M. Ericson, G. Chanfray, Neutrino quasielastic interaction and nuclear dynamics. Phys. Rev. C 84, 055502 (2011)Google Scholar
  15. 15.
    MiniBooNE Collaboration, The MiniBooNE Detector. Nucl. Instrum. Meth. A599, 28–46 (2009)Google Scholar
  16. 16.
    F. Vannucci, The NOMAD Experiment at CERN. Adv. High Energy Phys. 2014, 129694 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Cheryl E. Patrick
    • 1
  1. 1.Department of Physics & AstronomyUniversity College LondonLondonUK

Personalised recommendations