Advertisement

Double-Differential Cross Section Calculation

  • Cheryl E. Patrick
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This section details how the double-differential cross section is calculated, including subtracting backgrounds and correcting for detector smearing and acceptance, and for reconstruction efficiency.

References

  1. 1.
    T. Adye, Unfolding algorithms and tests using RooUnfold (2011). arXiv:1105.1160 [physics.data-an]Google Scholar
  2. 2.
    C. Andreopoulos et al., The GENIE neutrino Monte Carlo generator. Nucl. Inst. Methods Phys. Res. A 614(1), 87–104 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    R. Brun, F. Rademakers, ROOT: an object oriented data analysis framework. Nucl. Instrum. Methods A389, 81–86 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    G. D’Agostini, Improved iterative Bayesian unfolding (2010). arXiv:1010.0632 [physics.data-an]Google Scholar
  5. 5.
    B. Eberly et al., Charged pion production in ν μ interactions on hydrocarbon at \(\left <\mathrm {E}_\nu \right >=4.0\mathrm {GeV}\). Phys. Rev. D 92, 092008 (2015)Google Scholar
  6. 6.
    L. Fields et al., Measurement of muon antineutrino quasielastic scattering on a hydrocarbon target at E ν ∼ 3.5 GeV. Phys. Rev. Lett. 111(2), 022501 (2013)Google Scholar
  7. 7.
    G.A. Fiorentini et al., Measurement of muon neutrino quasielastic scattering on a hydrocarbon target at E ν ∼ 3.5 GeV. Phys. Rev. Lett. 111(2), 022502 (2013)Google Scholar
  8. 8.
    L.A. Soplin, Neutrino flux prediction for the NuMI beamline. Ph.D. thesis, College of William and Mary, 2016Google Scholar
  9. 9.
    T. Walton, M. Betancourt et al., Measurement of muon plus proton final states in ν μ interactions on hydrocarbon at \(\left <\mathrm {E}_\nu \right > =4.2\mathrm {GeV}\). Phys. Rev. D 91, 071301 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Cheryl E. Patrick
    • 1
  1. 1.Department of Physics & AstronomyUniversity College LondonLondonUK

Personalised recommendations