Advertisement

Charged-Current Quasi-Elastic Event Selection

  • Cheryl E. Patrick
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This analysis measures the charged-current quasi-elastic cross-section for anti-neutrinos incident on the plastic scintillator (CH) tracker region of the MINERvA detector. In the free-nucleon case, this interaction would be represented by: The interaction is explained in detail in Sect.  2.2. A true charged-current quasi-elastic (CCQE) antineutrino scattering interaction should produce a characteristic signature: an outgoing positive muon plus a recoil neutron. Thus, in general, our reconstruction should attempt to identify final states with this configuration, while rejecting events from other processes.

References

  1. 1.
    K. Abe et al., Measurement of the ν μ charged-current quasielastic cross section on carbon with the ND280 detector at T2K. Phys. Rev. D 92, 112003 (2015)Google Scholar
  2. 2.
    K. Abe et al., Measurement of the ν μ charged current quasielastic cross section on carbon with the T2K on-axis neutrino beam. Phys. Rev. D 91, 112002 (2015)Google Scholar
  3. 3.
    K. Abe et al., Measurement of double-differential muon neutrino charged-current interactions on C8H8 without pions in the final state using the T2K off-axis beam (2016). arXiv 1602.03652 (physics.hep-ex)Google Scholar
  4. 4.
    N. Abgrall et al., Time projection chambers for the T2K near detectors. Nucl. Instrum. Methods A 637, 25–46 (2011)Google Scholar
  5. 5.
    A.A. Aguilar-Arevalo et al., First measurement of the muon neutrino charged current quasielastic double differential cross section. Phys. Rev. D 81, 092005 (2010)Google Scholar
  6. 6.
    A.A. Aguilar-Arevalo et al., First measurement of the muon antineutrino double-differential charged-current quasielastic cross section. Phys. Rev. D 88, 032001 (2013)Google Scholar
  7. 7.
    C. Andreopoulos et al., The GENIE neutrino Monte Carlo generator. Nucl. Instrum. Methods Phys. Res., Sect. A 614(1), 87–104 (2010)Google Scholar
  8. 8.
    G. Barrand et al., GAUDI – the software architecture and framework for building LHCb data processing applications, in Proceedings, 11th International Conference on Computing in High-Energy and Nuclear Physics (CHEP 2000) (2000), pp. 92–95Google Scholar
  9. 9.
    M. Betancourt, MINOS tracking efficiencies for ME energy (2015). Available at http://minerva-docdb.fnal.gov:8080/cgi-bin/ShowDocument?docid=11642
  10. 10.
    R. Brun, F. Rademakers, ROOT: an object oriented data analysis framework. Nucl. Instrum. Methods A 389, 81–86 (1997)Google Scholar
  11. 11.
    L. Fields et al., Measurement of muon antineutrino quasielastic scattering on a hydrocarbon target at E ν ∼ 3.5 GeV. Phys. Rev. Lett. 111(2), 022501 (2013)Google Scholar
  12. 12.
    G.A. Fiorentini et al., Measurement of muon neutrino quasielastic scattering on a hydrocarbon target at E ν ∼ 3.5 GeV. Phys. Rev. Lett. 111(2), 022502 (2013)Google Scholar
  13. 13.
    MiniBooNE Collaboration, The MiniBooNE Detector. Nucl. Instrum. Methods A 599, 28–46 (2009)Google Scholar
  14. 14.
    J. Park et al., Measurement of neutrino flux from neutrino-electron elastic scattering (2016). arXiv:1512.07699 (physics.ins-det)Google Scholar
  15. 15.
    J.S. Ratchford, Identifying muons for neutrino oscillation and cross section experiments. PhD thesis, Texas U., ARL, 2012Google Scholar
  16. 16.
    P. Rodrigues, C. Wilkinson, K. McFarland, Constraining the GENIE model of neutrino-induced single pion production using reanalyzed bubble chamber data (2016). arXiv 1601.01888 (physics.hep-ex)Google Scholar
  17. 17.
    R. Subedi et al., Probing cold dense nuclear matter. Science 320(5882), 1476–1478 (2008)CrossRefADSGoogle Scholar
  18. 18.
    T. Walton, M. Betancourt et al., Measurement of muon plus proton final states in ν μ interactions on hydrocarbon at \(\left <\mathrm {E}_\nu \right > =4.2\mathrm {GeV}\). Phys. Rev. D 91, 071301 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Cheryl E. Patrick
    • 1
  1. 1.Department of Physics & AstronomyUniversity College LondonLondonUK

Personalised recommendations