The MINERvA Experiment

  • Cheryl E. Patrick
Part of the Springer Theses book series (Springer Theses)


MINERvA (Main INjector ExpeRiment ν-A) is a dedicated neutrino-nucleus scattering cross section experiment. It is situated in the NuMI neutrino beam at Fermi National Accelerator Laboratory (FNAL, or Fermilab), in Batavia, Illinois. MINERvA detects neutrino interactions using a tracker consisting of strips of doped polystyrene scintillator, arranged in three orientations to enable three-dimensional track reconstruction. Upstream of the central tracker region, planes of scintillator strips are interspersed with passive nuclear targets consisting of several different materials, allowing MINERvA to study how scattering cross section distributions depend on the composition of the target nucleus. The near detector for the MINOS experiment [38] (Main Injector Neutrino Oscillation Search), located 2 m downstream of MINERvA, serves as a muon spectrometer. Its magnetized detector provides data on the charge and momentum of muons exiting the back of MINERvA.


  1. 1.
    N. Abgrall et al., Measurements of cross sections and charged pion spectra in proton-carbon interactions at 31 GeV/c. Phys. Rev. C 84, 034604 (2011)Google Scholar
  2. 2.
    E. Ables et al., P-875: a long baseline neutrino oscillation experiment at Fermilab. Technical Report, Fermilab (1995)Google Scholar
  3. 3.
    P. Adamson et al., Neutrino and antineutrino inclusive charged-current cross section measurements with the MINOS near detector. Phys. Rev. D 81, 072002 (2010)CrossRefADSGoogle Scholar
  4. 4.
    P. Adamson et al., Search for sterile neutrino mixing in the MINOS long-baseline experiment. Phys. Rev. D 81, 052004 (2010)CrossRefADSGoogle Scholar
  5. 5.
    P. Adamson et al., First direct observation of muon antineutrino disappearance. Phys. Rev. Lett. 107, 021801 (2011)CrossRefADSGoogle Scholar
  6. 6.
    P. Adamson et al., Measurement of the neutrino mass splitting and flavor mixing by MINOS. Phys. Rev. Lett. 106, 181801 (2011)CrossRefADSGoogle Scholar
  7. 7.
    P. Adamson et al., Electron neutrino and antineutrino appearance in the full MINOS data sample. Phys. Rev. Lett. 110, 171801 (2013)CrossRefADSGoogle Scholar
  8. 8.
    P. Adamson et al., Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS. Phys. Rev. Lett. 110, 251801 (2013)CrossRefADSGoogle Scholar
  9. 9.
    P. Adamson et al., Combined analysis of ν μ disappearance and ν μ → ν e appearance in MINOS using accelerator and atmospheric neutrinos. Phys. Rev. Lett. 112, 191801 (2014)CrossRefADSGoogle Scholar
  10. 10.
    P. Adamson et al., The NuMI neutrino beam . Nucl. Instrum. Methods Phys. Res., Sect. A 806, 279–306 (2016)Google Scholar
  11. 11.
    S. Agostinelli et al., GEANT4: a simulation toolkit. Nucl. Instrum. Methods A506, 250–303 (2003)CrossRefADSGoogle Scholar
  12. 12.
    L. Aliaga et al., Design, calibration, and performance of the MINERvA detector. Nucl. Instrum. Methods A743, 130–159 (2014)CrossRefADSGoogle Scholar
  13. 13.
    L. Aliaga, L. Fields, M. Kiveni, M. Kordosky, A. Norrick, TN004: a brief documentation of the flux (2015). Available at Google Scholar
  14. 14.
    L. Aliaga Soplin, Neutrino flux prediction for the NuMI beamline. PhD thesis, William-Mary College, 2016Google Scholar
  15. 15.
    C. Alt et al., Inclusive production of charged pions in p + C collisions at 158 GeV/c beam momentum. Eur. Phys. J. C 49(4), 897–917 (2007)CrossRefADSGoogle Scholar
  16. 16.
    C. Anderson et al., The ArgoNeuT detector in the NuMI low-energy beam line at Fermilab, in JINST, vol. 7 (2012), P10019Google Scholar
  17. 17.
    C. Andreopoulos et al., The GENIE neutrino Monte Carlo generator. Nucl. Inst. Methods Phys. Res. A 614(1), 87–104 (2010)CrossRefADSGoogle Scholar
  18. 18.
    G. Barrand et al., GAUDI - the software architecture and framework for building LHCb data processing applications, in Proceedings, 11th International Conference on Computing in High-Energy and Nuclear Physics (CHEP 2000) (2000), pp. 92–95Google Scholar
  19. 19.
    D.S. Barton et al., Experimental study of the a dependence of inclusive hadron fragmentation. Phys. Rev. D 27, 2580–2599 (1983)CrossRefADSGoogle Scholar
  20. 20.
    A. Bodek, J.L. Ritchie, Fermi-motion effects in deep-inelastic lepton scattering from nuclear targets. Phys. Rev. D 23, 1070–1091 (1981)CrossRefADSGoogle Scholar
  21. 21.
    A. Bodek, I. Park, U.-K. Yang, Improved low Q2 model for neutrino and electron nucleon cross sections in few GeV region. Nucl. Phys. B Proc. Suppl. 139, 113–118 (2005). Proceedings of the Third International Workshop on Neutrino-Nucleus Interactions in the Few-GeV RegionGoogle Scholar
  22. 22.
    T.T. Böhlen, F. Cerutti, M.P.W. Chin, A. Fassò, A. Ferrari, P.G. Ortega, A. Mairani, P.R. Sala, G. Smirnov, V. Vlachoudis, The FLUKA code: developments and challenges for high energy and medical applications. Nucl. Data Sheets 120, 211–214 (2014)CrossRefADSGoogle Scholar
  23. 23.
    R. Bradford, A. Bodek, H. Budd, J. Arrington, A new parameterization of the nucleon elastic form factors. Nucl. Phys. B, Proc. Suppl. 159, 127–132 (2006)Google Scholar
  24. 24.
    R. Brun, F. Rademakers, ROOT: an object oriented data analysis framework. Nucl. Instrum. Methods A389, 81–86 (1997)CrossRefADSGoogle Scholar
  25. 25.
    F.T. Cole, E.L. Goldwasser, R. Rathbun Wilson, National Accelerator Laboratory design report January 1968. Technical Report, Fermilab (1968)Google Scholar
  26. 26.
    S. Dytman, INTRANUKE-hA, in AIP Conference Proceedings, vol. 896 (2007), pp. 178–184Google Scholar
  27. 27.
    F.J. Ernst, R.G. Sachs, K.C. Wali, Electromagnetic form factors of the nucleon. Phys. Rev. 119, 1105–1114 (1960)CrossRefADSGoogle Scholar
  28. 28.
    A. Ferrari, P.R. Sala, A. Fasso, J. Ranft, FLUKA: a multi-particle transport code (Program version 2005). CERN-2005-010, SLAC-R-773, INFN-TC-05–11 (2005)Google Scholar
  29. 29.
    L. Fields, TN010 An Analysis of \(\bar {\nu }\) Charged Current Quasi-Elastic Interactions. Available at
  30. 30.
    P. Fuhrmann, dCache, the overview. Technical Report, Deutsches Elektronen Synchrotron (2006)Google Scholar
  31. 31.
    Hamamatsu Photonics K.K., Photomultiplier Tubes - Basics and Applications (Hamamatsu Photonics K.K., Electron Tube Division, Hamamatsu, 2007)Google Scholar
  32. 32.
    A. Heikkinen, N. Stepanov, J.P. Wellisch, Bertini intra-nuclear cascade implementation in Geant4 (2003). arXiv nucl-th/0306008Google Scholar
  33. 33.
    E.L. Hubbard, Booster synchrotron. Technical Report, Fermilab (1973)CrossRefGoogle Scholar
  34. 34.
    R.A. Illingworth, M.W. Mengel, K. Lato, SAM User Guide. Available at (2015)
  35. 35.
    J. Kleykamp, MEU/LY/PE as a function of time plots (2016). Available at Google Scholar
  36. 36.
    A.V. Lebedev, Ratio of pion kaon production in proton carbon interactions. PhD thesis, Harvard University, 2007Google Scholar
  37. 37.
    C.H. Llewellyn Smith, Neutrino reactions at accelerator energies. Phys. Rep. 3(5), 261–379 (1972)CrossRefADSGoogle Scholar
  38. 38.
    D.G. Michael et al., The magnetized steel and scintillator calorimeters of the MINOS experiment. Nucl. Inst. Methods Phys. Res. A 596(2), 190–228 (2008)CrossRefADSGoogle Scholar
  39. 39.
    MINERvA Collaboration, Minerva neutrino detector response measured with test beam data. arXiv:1501.06431 [physics.ins-det], April 2015Google Scholar
  40. 40.
  41. 41.
    K.A. Olive et al., Review of particle physics. Chin. Phys. C38, 090001 (2014)CrossRefADSGoogle Scholar
  42. 42.
    J. Park et al. (MINERvA collaboration), Measurement of neutrino flux from neutrino-electron elastic scattering. Phys. Rev. D 93, 112007 (2016)Google Scholar
  43. 43.
    R.B. Patterson, The NOvA experiment: status and outlook. Nucl. Phys. Proc. Suppl. 151, 235–236 (2013)Google Scholar
  44. 44.
    Z. Pavlovic, Observation of disappearance of muon neutrinos in the NuMI beam. PhD thesis, Texas University, 2008Google Scholar
  45. 45.
    G.N. Perdue et al., The MINERνA data acquisition system and infrastructure. Nucl. Instrum. Methods A694, 179–192 (2012)CrossRefADSGoogle Scholar
  46. 46.
    J. Rademacker, An exact formula to describe the amplification process in a photomultiplier tube. Nucl. Instrum. Methods A484, 432–443 (2002)CrossRefADSGoogle Scholar
  47. 47.
    D. Rein, L.M. Sehgal, Neutrino excitation of baryon resonances and single pion production. Ann. Phys. 133, 79–153 (1981)CrossRefADSGoogle Scholar
  48. 48.
    S.M. Ross, Peirce’s criterion for the elimination of suspect experimental data. J. Eng. Technol. 20(2), 38–41 (2003)Google Scholar
  49. 49.
    R.A. Smith, E.J. Moniz, Neutrino reactions on nuclear targets. Nucl. Phys. B 43, 605–622 (1972)CrossRefADSGoogle Scholar
  50. 50.
    M. Storms, Summary of MINERvA/MINOS Positioning (2012). Available at Google Scholar
  51. 51.
    N. Tagg et al., Arachne - a web-based event viewer for MINERvA. Nucl. Instrum. Methods 676, 44–49 (2012)CrossRefADSGoogle Scholar
  52. 52.
    J. Wolcott, TN015: systematic uncertainties from Feynman scaling applied to NA49 (2013) Available at Google Scholar
  53. 53.
    T. Yang, AGKY — transitions between KNO-based and JETSET, in AIP Conference Proceedings, vol. 967 (2007), pp. 269–275Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Cheryl E. Patrick
    • 1
  1. 1.Department of Physics & AstronomyUniversity College LondonLondonUK

Personalised recommendations