Skip to main content

A Self-stabilizing General De Bruijn Graph

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10616))

Abstract

Searching for other participants is one of the most important operations in a distributed system. We are interested in topologies in which it is possible to route a packet in a fixed number of hops until it arrives at its destination. Given a constant d, this paper introduces a new self-stabilizing protocol for the q-ary d-dimensional de Bruijn graph (\(q = \root d \of {n}\)) that is able to route any search request in at most d hops w.h.p., while significantly lowering the node degree compared to the clique: We require nodes to have a degree of \(\mathcal O(\root d \of {n})\), which is asymptotically optimal for a fixed diameter d. The protocol keeps the expected amount of edge redirections per node in \(\mathcal O(\root d \of {n})\), when the number of nodes in the system increases by factor \(2^d\). The number of messages that are periodically sent out by nodes is constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen, D.G., Balakrishnan, H., Kaashoek, M.F., Morris, R.: Resilient overlay networks. Comput. Commun. Rev. 32(1), 66 (2002). doi:10.1145/510726.510740

    Article  Google Scholar 

  2. Berns, A., Ghosh, S., Pemmaraju, S.V.: Building self-stabilizing overlay networks with the transitive closure framework. Theor. Comput. Sci. 512, 2–14 (2013). doi:10.1016/j.tcs.2013.02.021

    Article  MathSciNet  MATH  Google Scholar 

  3. de Bruijn, N.G.: A combinatorial problem. Koninklijke Nederlandsche Akademie Van Wetenschappen 49(6), 758–764 (1946)

    MATH  Google Scholar 

  4. Brutlag, J.: Speed matters for Google web search. Technical report, Google, Inc. (2009)

    Google Scholar 

  5. Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: a self-stabilizing deterministic skip list and skip graph. Theor. Comput. Sci. 428, 18–35 (2012). doi:10.1016/j.tcs.2011.12.079

    Article  MathSciNet  MATH  Google Scholar 

  6. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974). doi:10.1145/361179.361202

    Article  MATH  Google Scholar 

  7. Feldmann, M., Scheideler, C.: A self-stabilizing general de bruijn graph (2017). https://arxiv.org/abs/1708.06542

    Google Scholar 

  8. Gupta, A., Liskov, B., Rodrigues, R.: One hop lookups for peer-to-peer overlays. In: Jones, M.B. (ed.) Proceedings of HotOS 2003: 9th Workshop on Hot Topics in Operating Systems, Lihue (Kauai), Hawaii, USA, 18–21 May 2003, pp. 7–12. USENIX (2003). https://www.usenix.org/conference/hotos-ix/one-hop-lookups-peer-peer-overlays

  9. Gupta, A., Liskov, B., Rodrigues, R.: Efficient routing for peer-to-peer overlays. In: Morris, R., Savage, S. (eds.) Proceedings of 1st Symposium on Networked Systems Design and Implementation (NSDI 2004), San Francisco, California, USA, 29–31 March 2004, pp. 113–126. USENIX (2004). http://www.usenix.org/events/nsdi04/tech/gupta.html

  10. Kniesburges, S., Koutsopoulos, A., Scheideler, C.: Re-chord: a self-stabilizing chord overlay network. Theory Comput. Syst. 55(3), 591–612 (2014). doi:10.1007/s00224-012-9431-2

    Article  MathSciNet  MATH  Google Scholar 

  11. Kniesburges, S., Koutsopoulos, A., Scheideler, C.: A deterministic worst-case message complexity optimal solution for resource discovery. Theor. Comput. Sci. 584, 67–79 (2015). doi:10.1016/j.tcs.2014.11.027

    Article  MathSciNet  MATH  Google Scholar 

  12. Koutsopoulos, A., Scheideler, C., Strothmann, T.: Towards a universal approach for the finite departure problem in overlay networks. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015. LNCS, vol. 9212, pp. 201–216. Springer, Cham (2015). doi:10.1007/978-3-319-21741-3_14

    Chapter  Google Scholar 

  13. Malyshev, F.M., Tarakanov, V.E.: Generalized de bruijn graphs. Math. Notes 62(4), 449–456 (1997). doi:10.1007/BF02358978

    Article  MathSciNet  MATH  Google Scholar 

  14. Naor, M., Wieder, U.: Novel architectures for P2P applications: the continuous-discrete approach. ACM Trans. Algorithms 3(3), 34 (2007). doi:10.1145/1273340.1273350

    Article  MathSciNet  MATH  Google Scholar 

  15. Nor, R.M., Nesterenko, M., Scheideler, C.: Corona: a stabilizing deterministic message-passing skip list. Theor. Comput. Sci. 512, 119–129 (2013)

    Article  MathSciNet  Google Scholar 

  16. Onus, M., Richa, A.W., Scheideler, C.: Linearization: locally self-stabilizing sorting in graphs. In: Proceedings of the Nine Workshop on Algorithm Engineering and Experiments, ALENEX 2007, New Orleans, Louisiana, USA, 6 January 2007. SIAM (2007). http://dx.doi.org/10.1137/1.9781611972870.10

    Chapter  Google Scholar 

  17. Richa, A.W., Scheideler, C., Stevens, P.: Self-stabilizing de bruijn networks. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 416–430. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24550-3_31

    Chapter  Google Scholar 

  18. Shaker, A., Reeves, D.S.: Self-stabilizing structured ring topology P2P systems. In: Caronni, G., Weiler, N., Waldvogel, M., Shahmehri, N. (eds.) Fifth IEEE International Conference on Peer-to-Peer Computing (P2P 2005), Konstanz, Germany, 31 August–2 September 2005, pp. 39–46. IEEE Computer Society (2005). http://dx.doi.org/10.1109/P2P.2005.34

Download references

Acknowledgements

This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research Center “On-The-Fly Computing” (SFB 901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Feldmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Feldmann, M., Scheideler, C. (2017). A Self-stabilizing General De Bruijn Graph. In: Spirakis, P., Tsigas, P. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2017. Lecture Notes in Computer Science(), vol 10616. Springer, Cham. https://doi.org/10.1007/978-3-319-69084-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69084-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69083-4

  • Online ISBN: 978-3-319-69084-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics