Ant-Inspired Dynamic Task Allocation via Gossiping

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10616)

Abstract

We study the distributed task allocation problem in multi-agent systems, where each agent selects a task in such a way that, collectively, they achieve a proper global task allocation. In this paper, inspired by specialization on division of labor in ant colonies, we propose several scalable and efficient algorithms to dynamically allocate the agents as the task demands change. The algorithms have their own pros and cons, with respect to (1) how fast they react to dynamic demands change, (2) how many agents need to switch tasks, (3) whether extra agents are needed, and (4) whether they are resilient to faults.

References

  1. 1.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)CrossRefMATHGoogle Scholar
  2. 2.
    Beshers, S.N., Fewell, J.H.: Models of division of labor in social insects. Annu. Rev. Entomol. 46(1), 413–440 (2001)CrossRefGoogle Scholar
  3. 3.
    Bonabeau, E., Theraulaz, G., Deneubourg, J.-L.: Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies. Proc. R. Soc. Lond. B: Biol. Sci. 263(1376), 1565–1569 (1996)CrossRefGoogle Scholar
  4. 4.
    Bonabeau, E., Theraulaz, G., Deneubourg, J.-L.: Fixed response thresholds and the regulation of division of labor in insect societies. Bull. Math. Biol. 60, 753–807 (1998)CrossRefMATHGoogle Scholar
  5. 5.
    Cornejo, A., Dornhaus, A., Lynch, N., Nagpal, R.: Task allocation in ant colonies. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 46–60. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45174-8_4 Google Scholar
  6. 6.
    Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: Proceedings of 6th ACM Symposium on Principles of Distributed Computing (PODC), pp. 1–12 (1987)Google Scholar
  7. 7.
    Dertouzos, M.L., Mok, A.K.: Multiprocessor online scheduling of hard-real-time tasks. IEEE Trans. Softw. Eng. 15(12), 1497–1506 (1989)CrossRefGoogle Scholar
  8. 8.
    Dornhaus, A., Franks, N.: Individual and collective cognition in ants and other insects (Hymenoptera: Formicidae). Myrmecological News 11, 215–226 (2008)Google Scholar
  9. 9.
    Drucker, A., Kuhn, F., Oshman, R.: The communication complexity of distributed task allocation. In: Proceedings of 31st ACM Symposium on Principles of Distributed Computing (PODC), pp. 67–76 (2012)Google Scholar
  10. 10.
    Feinerman, O., Korman, A.: The ANTS problem. Distrib. Comput. 30, 149–168 (2012). Extended abstracts appeared in PODC, : (together with Z, p. 2012. Lotker and J.S, Sereni) and in DISCMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Frieze, A.M., Grimmett, G.R.: The shortest-path problem for graphs with random arc-lengths. Discret. Appl. Math. 10(1), 57–77 (1985)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res. 23(9), 939–954 (2004)CrossRefGoogle Scholar
  13. 13.
    Ghaffari, M., Musco, C., Radeva, T., Lynch, N.A.: Distributed house-hunting in ant colonies. In: Proceedings of 34th ACM Symposium on Principles of Distributed Computing (PODC), pp. 57–66 (2015)Google Scholar
  14. 14.
    Giakkoupis, G., Kermarrec, A.-M., Woelfel, P.: Gossip protocols for renaming and sorting. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 194–208. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41527-2_14 CrossRefGoogle Scholar
  15. 15.
    Gordon, D.M.: The organization of work in social insect colonies. Complexity 8(1), 43–46 (2002)CrossRefGoogle Scholar
  16. 16.
    Gordon, D.M., Goodwin, B.C., Trainor, L.: A parallel distributed model of the behaviour of ant colonies. J. of Theor. Biol. 156(3), 293–307 (1992)CrossRefGoogle Scholar
  17. 17.
    Greene, M.J., Gordon, D.M.: Interaction rate informs harvester ant task decisions. Behav. Ecol. 18(2), 451–455 (2007)CrossRefGoogle Scholar
  18. 18.
    Hughes, W.O., Sumner, S., Borm, S.V., Boomsma, J.J.: Worker caste polymorphism has a genetic basis in acromyrmex leafcutting ants. Proc. Nat. Acad. Sci. 100(16), 9394–9397 (2003)CrossRefGoogle Scholar
  19. 19.
    Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: IEEE 44th Symposium on Foundations of Computer Science (FOCS), pp. 482–491 (2003)Google Scholar
  20. 20.
    Kozub, S.: Amazons new drone delivery plan includes package parachutes. The Verge (2017)Google Scholar
  21. 21.
    Langner, T., Uitto, J., Stolz, D., Wattenhofer, R.: Fault-tolerant ANTS. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 31–45. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45174-8_3 Google Scholar
  22. 22.
    Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM 20(1), 46–61 (1973)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Liu, L., Shell, D.A.: Large-scale multi-robot task allocation via dynamic partitioning and distribution. Auton. Robot. 33(3), 291–307 (2012)CrossRefGoogle Scholar
  24. 24.
    Musco, C., Su, H., Lynch, N.A.: Ant-inspired density estimation via random walks: extended abstract. In Procceedings of 35th ACM Symposium on Principles of Distributed Computing (PODC), pp. 469–478 (2016)Google Scholar
  25. 25.
    Pacala, S.W., Gordon, D.M., Godfray, H.C.J.: Effects of social group size on information transfer and task allocation. Evol. Ecol. 10(2), 127–165 (1996)CrossRefGoogle Scholar
  26. 26.
    Pereira, H.M., Gordon, D.M.: A trade-off in task allocation between sensitivity to the environment and response time. J. Theor. Bio. 208(2), 165–184 (2001)CrossRefGoogle Scholar
  27. 27.
    Radeva, T.: A Symbiotic Perspective on Distributed Algorithms and Social Insects. Dissertation, Massachusetts Institute of Technology (2017)Google Scholar
  28. 28.
    Radeva, T., Dornhaus, A., Lynch, N., Nagpal, R., Su, H.-H.: Costs of task allocation with local feedback: effects of colony size and extra workers in social insects and other multi-agent systems. Preliminary version appeared as a brief announcement In: Proceedings of 28th Symposium on Distributed Computing (DISC), pp. 657–658 (2014, submitted)Google Scholar
  29. 29.
    Robinson, G.E.: Regulation of division of labor in insect societies. Annu. Rev. Entomol. 37(1), 637–665 (1992)CrossRefGoogle Scholar
  30. 30.
    Sendova-Franks, A.B., Franks, N.R.: Spatial relationships within nests of the ant leptothorax unifasciatus (latr.) and their implications for the division of labour. Anim. Behav. 50(1), 121–136 (1995)CrossRefGoogle Scholar
  31. 31.
    Tripet, F., Nonacs, P.: Foraging for work and age-based polyethism: the roles of age and previous experience on task choice in ants. Ethology 110(11), 863–877 (2004)CrossRefGoogle Scholar
  32. 32.
    Wilson, E.O.: Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). Behav. Ecol. Sociobiol. 7(2), 157–165 (1980)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hsin-Hao Su
    • 1
  • Lili Su
    • 1
  • Anna Dornhaus
    • 2
  • Nancy Lynch
    • 1
  1. 1.CSAIL, MITCambridgeUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA

Personalised recommendations