Multiple Clocks in the Evolution of Living Organisms

  • Antoine DanchinEmail author
Part of the Grand Challenges in Biology and Biotechnology book series (GCBB)


Looking for a common origin of all things is pervasive. This is reflected in the idea of a common clock ticking in parallel with evolution. Yet, two stages mark any form of life, multiplication and being alive without multiplying. Also, constructing more biomass puts together at least three space dimensions: the cell volume, its membranes and its genome. This creates a massive selection pressure on the linear structure of DNA, which must to be synthesised in parallel with the cell’s volume, tending to increase the length of DNA and to decrease the availability of its building blocks while fitting with the core metabolism of the cell. The increase of genome length favours ingress of horizontally transferred genes. The limitation of deoxyribonucleotide synthesis is ensured by using nucleoside diphosphates, not triphosphate, as precursors. Furthermore this synthesis is metabolically tied up with gene expression and membrane synthesis. Evolution trees are built up according to the evolution of multiplication, forgetting that ageing organisms can still produce a progeny. Taken together these processes imply that there is no common clock ticking at the same rate for all the functions essential for the evolution of life.



This work benefited from discussions held in the E-seminar Stanislas Noria.


  1. Acevedo-Rocha CG, Fang G et al (2013) From essential to persistent genes: a functional approach to constructing synthetic life. Trends Genet 29(5):273–279CrossRefGoogle Scholar
  2. Adebali O, Chiou Y-Y et al (2017) Genome-wide transcription-coupled repair in Escherichia coli is mediated by the Mfd translocase. Proc Natl Acad Sci USA 114(11):E2116–E2125CrossRefGoogle Scholar
  3. Afshordi N, Magueijo J (2016) Critical geometry of a thermal big bang. Phys Rev D 94(10):101301CrossRefGoogle Scholar
  4. Alacevic M (1963) Interspecific recombination in Streptomyces. Nature 197(4874):1323–1323CrossRefGoogle Scholar
  5. Belda E, Sekowska A et al (2013) An updated metabolic view of the Bacillus subtilis 168 genome. Microbiology 159(Pt 4):757–770CrossRefGoogle Scholar
  6. Bennett C (1988) Notes on the history of reversible computation. IBM J Res Dev 44:270–277CrossRefGoogle Scholar
  7. Binder PM, Danchin A (2011) Life's demons: information and order in biology. What subcellular machines gather and process the information necessary to sustain life? EMBO Rep 12(6):495–499CrossRefGoogle Scholar
  8. Bittner L-M, Arends J et al (2016) Mini review: ATP-dependent proteases in bacteria. Biopolymers 105(8):505–517CrossRefGoogle Scholar
  9. Bittner L-M, Arends J et al (2017) When, how and why? Regulated proteolysis by the essential FtsH protease in Escherichia coli. Biol Chem 398(5–6):625–635PubMedGoogle Scholar
  10. Budovsky A, Fraifeld VE et al (2010) Linking cell polarity, aging and rejuvenation. Biogerontology 12(2):167–175CrossRefGoogle Scholar
  11. Cao B, Chen C et al (2014) Genomic mapping of phosphorothioates reveals partial modification of short consensus sequences. Nat Commun 5:3951CrossRefGoogle Scholar
  12. Cockburn DW, Koropatkin NM (2016) Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. J Mol Biol 428(16):3230–3252CrossRefGoogle Scholar
  13. Cole EL Jr (1998) Functional analysis: a system conceptual design tool [and application to ATC system]. IEEE Trans Aerosp Electron Syst 34(2):354–365CrossRefGoogle Scholar
  14. Danchin A (1997) Comparison between the Escherichia coli and Bacillus subtilis genomes suggests that a major function of polynucleotide phosphorylase is to synthesize CDP. DNA Res 4(1):9–18CrossRefGoogle Scholar
  15. Danchin A (2003) The Delphic boat. What genomes tell us. Harvard University Press, CambridgeGoogle Scholar
  16. Danchin A (2009a) Bacteria as computers making computers. FEMS Microbiol Rev 33:3–26CrossRefGoogle Scholar
  17. Danchin A (2009b) Natural selection and immortality. Biogerontology 10(4):503–516CrossRefGoogle Scholar
  18. Danchin A (2012) Scaling up synthetic biology: do not forget the chassis. FEBS Lett 586(15):2129–2137CrossRefGoogle Scholar
  19. Danchin A (2014) The emergence of the first cells. Rev Cell Biol Mol Med: Scholar
  20. Danchin A (2017a) Coping with inevitable accidents in metabolism. Microb Biotechnol 10(1):57–72CrossRefGoogle Scholar
  21. Danchin A (2017b) From chemical metabolism to life: the origin of the genetic coding process. Beilstein J Org Chem 13:1119–1135CrossRefGoogle Scholar
  22. Danchin A, Fang G (2016) Unknown unknowns: essential genes in quest for function. Microb Biotechnol 9(5):530–540CrossRefGoogle Scholar
  23. Danchin A, Guerdoux-Jamet P et al (2000) Mapping the bacterial cell architecture into the chromosome. Philos Trans R Soc Lond Ser B Biol Sci 355(1394):179–190CrossRefGoogle Scholar
  24. Danchin A, Binder PM et al (2011) Antifragility and tinkering in biology (and in business); flexibility provides an efficient epigenetic way to manage risk. Genes 2(4):998–1016CrossRefGoogle Scholar
  25. Danchin A, Ouzounis C et al (2018) No wisdom in the crowd: genome annotation in the era of big data - current status and future prospects. Microb Biotechnol 11(4):588–605CrossRefGoogle Scholar
  26. Dyson FJ (1985) Origins of life. Cambridge University Press, CambridgeGoogle Scholar
  27. Elnatan D, Betegon M, et al (2017) Symmetry broken and rebroken during the ATP hydrolysis cycle of the mitochondrial Hsp90 TRAP1. Elife 6Google Scholar
  28. Fang G, Rocha EPC et al (2008) Persistence drives gene clustering in bacterial genomes. BMC Genomics 9:4CrossRefGoogle Scholar
  29. Flemming H-C, Wingender J et al (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14(9):563–575CrossRefGoogle Scholar
  30. Gaillard H, Aguilera A (2016) Transcription as a threat to genome integrity. Annu Rev Biochem 85(1):291–317CrossRefGoogle Scholar
  31. Glaeser SP, Kämpfer P (2015) Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 38(4):237–245CrossRefGoogle Scholar
  32. Goujon P (2001) From biotechnology to genomes: the meaning of the double helix. World Scientific, SingaporeCrossRefGoogle Scholar
  33. Harish A, Kurland CG (2017) Akaryotes and Eukaryotes are independent descendants of a universal common ancestor. Biochimie 138:168–183CrossRefGoogle Scholar
  34. Harish A, Tunlid A et al (2013) Rooted phylogeny of the three superkingdoms. Biochimie 95(8):1593–1604CrossRefGoogle Scholar
  35. Hashimoto M, Ichimura T et al (2005) Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol 55(1):137–149CrossRefGoogle Scholar
  36. Huerta-Sanchez E, Casey FP (2015) Archaic inheritance: supporting high-altitude life in Tibet. J Appl Physiol 119(10):1129CrossRefGoogle Scholar
  37. Hug LA, Baker BJ et al (2016) A new view of the tree of life. Nat Microbiol 1:16048CrossRefGoogle Scholar
  38. Huntley S, Hamann N et al (2010) Comparative genomic analysis of fruiting body formation in Myxococcales. Mol Biol Evol 28(2):1083–1097CrossRefGoogle Scholar
  39. Hutchison CA 3rd, Chuang RY et al (2016) Design and synthesis of a minimal bacterial genome. Science 351(6280):aad6253CrossRefGoogle Scholar
  40. Hutinet G, Swarjo MA et al (2017) Deazaguanine derivatives, examples of crosstalk between RNA and DNA modification pathways. RNA Biol 14(9):1175–1184CrossRefGoogle Scholar
  41. Jannasch H (1967) Growth of marine bacteria at limiting concentrations of organic carbon in seawater. Limnol Oceanogr 12(2):264–271CrossRefGoogle Scholar
  42. Jinks-Robertson S, Bhagwat AS (2014) Transcription-associated mutagenesis. Annu Rev Genet 48(1):341–359CrossRefGoogle Scholar
  43. Karas BJ, Jablanovic J et al (2013) Direct transfer of whole genomes from bacteria to yeast. Nat Methods 10(5):410–412CrossRefGoogle Scholar
  44. Kumar S (2005) Molecular clocks: four decades of evolution. Nat Rev Genet 6(8):654–662CrossRefGoogle Scholar
  45. Kysela DT, Randich AM et al (2016) Diversity takes shape: understanding the mechanistic and adaptive basis of bacterial morphology. PLoS Biol 14(10):e1002565CrossRefGoogle Scholar
  46. Landan G, Cohen G et al (1990) Evolution of isopenicillin N synthase genes may have involved horizontal gene transfer. Mol Biol Evol 7(5):399–406PubMedGoogle Scholar
  47. Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 3:184–191Google Scholar
  48. Lartigue C, Glass JI et al (2007) Genome transplantation in bacteria: changing one species to another. Science 317(5838):632–638CrossRefGoogle Scholar
  49. Li S, Ou XH et al (2012) Septin 7 is required for orderly meiosis in mouse oocytes. Cell Cycle 11(17):3211–3218CrossRefGoogle Scholar
  50. Longacre A, Reimers JM et al (1999) Specificity of transcription-enhanced mutations. Ann N Y Acad Sci 870:383–385CrossRefGoogle Scholar
  51. McCormick JR, Flärdh K (2012) Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev 36(1):206–231CrossRefGoogle Scholar
  52. Médigue C, Rouxel T et al (1991a) Evidence for horizontal gene transfer in Escherichia coli speciation. J Mol Biol 222(4):851–856CrossRefGoogle Scholar
  53. Médigue C, Viari A et al (1991b) Escherichia coli molecular genetic map (1500 kbp): update II. Mol Microbiol 5(11):2629–2640CrossRefGoogle Scholar
  54. Médigue C, Krin E et al (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15(10):1325–1335CrossRefGoogle Scholar
  55. Monod J (1972) Chance and necessity: an essay on the natural philosophy of modern biology. Vintage Books, New YorkGoogle Scholar
  56. Moonens K, Remaut H (2017) Evolution and structural dynamics of bacterial glycan binding adhesins. Curr Opin Struct Biol 44:48–58CrossRefGoogle Scholar
  57. Muro-Pastor AM, Hess WR (2012) Heterocyst differentiation: from single mutants to global approaches. Trends Microbiol 20(11):548–557CrossRefGoogle Scholar
  58. Nongkhlaw FMW (2014) Epiphytic and endophytic bacteria that promote growth of ethnomedicinal plants in the subtropical forests of Meghalaya, India. Universidad de Costa RicaGoogle Scholar
  59. Ohama T, Inagaki Y et al (2008) Evolving genetic code. Proc Jpn Acad Ser B Phys Biol Sci 84(2):58–74CrossRefGoogle Scholar
  60. Ohno S (1987) Repetition as the essence of life on this Earth: music and genes. Modern trends in human Leukemia VII: new results in clinical and biological research including pediatric oncology. Springer, Berlin, pp 511–519Google Scholar
  61. Ouzounis C, Kyrpides N (1996) The emergence of major cellular processes in evolution. FEBS Lett 390(2):119–123CrossRefGoogle Scholar
  62. Paixão-Cortes VR, Viscardi LH et al (2012) Homo sapiens, Homo neanderthalensis and the Denisova specimen: new insights on their evolutionary histories using whole-genome comparisons. Genet Mol Biol 35(4 Suppl):904–911CrossRefGoogle Scholar
  63. Pearl LH (2016) Review: the HSP90 molecular chaperone – an enigmatic ATPase. Biopolymers 105(8):594–607CrossRefGoogle Scholar
  64. Ragan MA, McInerney JO et al (2009) The network of life: genome beginnings and evolution. Introduction. Philos Trans R Soc Lond B Biol Sci 364(1527):2169–2175CrossRefGoogle Scholar
  65. Robinson N, Robinson A (2004) Molecular clocks deamidation of asparaginyl and glutaminyl residues in peptides and proteins. Althouse Press, Cave Junction, ORGoogle Scholar
  66. Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51(3):365–379PubMedPubMedCentralGoogle Scholar
  67. Rusconi R, Garren M et al (2014) Microfluidics expanding the frontiers of microbial ecology. Annu Rev Biophys 43:65–91CrossRefGoogle Scholar
  68. Sakofsky CJ, Grogan DW (2013) Endogenous mutagenesis in recombinant Sulfolobus plasmids. J Bacteriol 195(12):2776–2785CrossRefGoogle Scholar
  69. Sekowska A, Wendel S et al (2016) Generation of mutation hotspots in ageing bacterial colonies. Sci Rep 6(1):2CrossRefGoogle Scholar
  70. Staley JT, Fuerst JA (2017) Ancient, highly conserved proteins from a LUCA with complex cell biology provide evidence in support of the nuclear compartment commonality (NuCom) hypothesis. Res Microbiol 168(5):395–412CrossRefGoogle Scholar
  71. Stankiewicz P (2016) One pedigree we all may have come from – did Adam and Eve have the chromosome 2 fusion? Mol Cytogenet 9:72CrossRefGoogle Scholar
  72. Stringer C (2016) The origin and evolution of Homo sapiens. Philos Trans R Soc B Biol Sci 371(1698)CrossRefGoogle Scholar
  73. Sukhodolets VV (1988) Organization and evolution of the bacterial genome. Microbiol Sci 5(7):202–206PubMedGoogle Scholar
  74. Taheri-Araghi S, Brown SD et al (2015) Single-cell physiology. Annu Rev Biophys 44(1):123–142CrossRefGoogle Scholar
  75. Watanabe S, Shiwa Y et al (2012) Complete sequence of the first chimera genome constructed by cloning the hwole genome of Synechocystis strain PCC6803 into the Bacillus subtilis 168 genome. J Bacteriol 194(24):7007–7007CrossRefGoogle Scholar
  76. Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci USA 99(13):8742–8747CrossRefGoogle Scholar
  77. Wright BE (2004) Stress-directed adaptive mutations and evolution. Mol Microbiol 52(3):643–650CrossRefGoogle Scholar
  78. Wu T, Huang Q et al (2017) Mechanistic investigation on ROS resistance of phosphorothioated DNA. Sci Rep 7:42823CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Cardiometabolism and NutritionParisFrance
  2. 2.School of Biological Sciences, Li KaShing Faculty of MedicineHong Kong UniversityPokfulamChina

Personalised recommendations